期刊文献+

量子优化的氯碱电解多目标控制系统理论研究 被引量:1

Theoretical study on multi-objective control system of chlor-alkali electrolysis based on quantum optimization
下载PDF
导出
摘要 针对氯碱电解槽的节能降耗,增加其生产效率,根据氯碱电解的复杂控制过程,设计一种氯碱电解多目标控制系统。首先,基于历史数据分析氯碱电解槽的主要影响因子,在此基础上建立氯碱电解电流效率和直流电耗的Elman神经网络预测模型;然后,利用BP神经网络控制器来提高控制精度和动态跟踪精度,并用量子优化方法对BP神经网络控制器进行优化;最后,利用Matlab进行仿真,并与改进型非劣分类遗传算法(NSGA-Ⅱ)作对比,结果表明文中所提的控制策略有效,可以为氯碱生产过程提供优化操作指导。 The production efficiency is increased due to the energy saving and consumption reduction of chlor-alkali electrolysis cell.A multi-target control system for chlor-alkali electrolysis is designed to deal with the complicated control process of chlor-alkali electrolysis.The main influence factors of chlor-alkali electrolysis cell are analyzed based on historical data.On this basis,an Elman neural network prediction model for chlor-alkali electrolysis current efficiency and DC power consumption is established,and then BP neural network controller is used to improve control precision and dynamic tracking accuracy.The quantum optimization method is adopted to optimize the BP neural network controller.The simulation is carried out with Matlab.It is compared with the improved non-inferior classification genetic algorithm(NSGA-Ⅱ).The results show that the control strategy of the system proposed in this paper is effective and can provide optimal operation guidance for the chlor-alkali production process.
作者 马浩天 杨友良 马翠红 王禄 MA Haotian;YANG Youliang;MA Cuihong;WANG Lu(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063200,China)
出处 《现代电子技术》 北大核心 2019年第21期141-144,149,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61171058)~~
关键词 多目标控制系统 动态跟踪 预测模型 氯碱电解槽 控制器优化 ELMAN神经网络 multi-target control system dynamic tracking prediction model chlor-alkali electrolysis cell controller optimization Elman neural network
  • 相关文献

参考文献7

二级参考文献60

  • 1陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 2周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 3李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践,2006,26(11):116-124. 被引量:14
  • 4戴葵.神经网络设计[M].北京:机械工业出版社,2002.399-421.
  • 5Deb K, Pbatap A, Agarwal Set al. A fast and elitist multiobjective genetic algorithm: NSGA- Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
  • 6D. E. Rumelhart, J. L. McLelland. Parallel Distributed Processing: Exploration in the Microstructure of Cognition[M]. Cambridge, MA: MIT Press, 1986: 3-44.
  • 7Deb K, Agrawal S., Pratap A., et al., A fast elitist nondominated soRting genetic algorithm for multi-objective optimization: NSGA-Ⅱ [A], Proc of the Parallel Problem Solving from Nature VI Conf[C], Paris, 2000:849-858.
  • 8李成利,张明,孙月飞.NSGA-Ⅱ遗传算法在抑制电网谐波中的应用[J].微计算机信息,2007,23(28):273-275. 被引量:1
  • 9Narayanan A, Moore M. Quantum-inspired genetic algorithm [ A ]. Proceedings of 1996 IEEE International Conference on Evolutionary Computation [ C ]. Piscataway, USA: IEEE Press, 1996.61 - 66.
  • 10GLOVER F. Tabu search:Part II[ J]. ORSA Journal on Com- puting, 1990,2(1) :4 - 32.

共引文献61

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部