期刊文献+

多数据源层次化网络攻击路径长度预测仿真 被引量:5

Multi-Data Source Hierarchical Network Attack Path Length Prediction Simulation
下载PDF
导出
摘要 针对当前攻击路径长度预测方法存在网络攻击成功概率低,路径长度预测准确性差的问题,提出基于吸收Markov链的网络攻击路径长度预测方法。采用转移概率度量法对网络中节点访问的期望值展开分析,利用比例系数计算网络攻击图状态转移边的概率比,以网络过渡状态下期望转移概率、非零矩阵等为基础分析网络攻击者从开始到达结束的概率,并计算网络受到攻击后,初始节点的转移概率,得到网络攻击的数学期望矩阵,利用上述矩阵计算网络节点访问次数的期望值总和,利用节点的转移次数计算网络攻击路径的期望长度,构建网络过渡状态下期望转移概率矩阵,通过对矩阵的求解,最终实现多数据源层次化网络攻击路径长度的预测。实验结果表明,提出方法在对多数据源层次化网络攻击路径长度预测时,网络目标节点的置信度较低,并且网络攻击成功概率较高,不仅验证了提出方法良好的性能,也提高了网络攻击路径长度预测的准确性。 Current method to predict the attack path length has low successful probability and low prediction accuracy of path length. Therefore, a method to predict the network attack path length based on absorbing Markov chain was proposed. The measure method of transition probability was used to analyze the expected value of node access in network and the proportionality factors were used to calculate the probability ratio of state transition edge of network attack graph. Based on the expected transition probability and non-zero matrix in the network transition state, the probability of network attacker from start to end was analyzed. And then, the transition probability of initial node after the network attack was calculated to obtain the mathematical expectation matrix of network attack. In addition, this matrix was used to calculate the sum of the expected values of network node access times. Furthermore, the expected length of network attack path was computed by the number of node transition. The expected transition probability matrix under the network transition state was constructed. By solving the matrix, the prediction for the multi-data source hierarchical network attack path length was achieved. Simulation results verify that the proposed method has lower degree of confidence of network target node in predicting the length of multi-data source hierarchical network attack path and the successful probability of network attack is high. Meanwhile, the good performance of proposed method is proved and the prediction accuracy of network attack path length is improved.
作者 张科 ZHANG Ke(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang Guizhou 550025,China)
出处 《计算机仿真》 北大核心 2019年第11期432-435,共4页 Computer Simulation
关键词 多数据源 层次化 网络攻击 路径长度预测 Multiple data sources Hierarchical Network attack Path length prediction
  • 相关文献

参考文献9

二级参考文献87

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2Zhou Bin,Jian Pei.A Brief Survey on Anonymization Techniques for Privacy Preserving Publishing of Social Network Data[J].ACM SIGKDD Explorations Newsletter,2008,10(2):12-22.
  • 3Liu Lian,Wang Jie,Liu Jinze,et al.Privacy Preserving in Social Networks Against Sensitive Edge Disclosure,CMIDA-HiPSCCS 006-08[R].Department of Computer Science,University of Kentucky,2008.
  • 4Campan A,Truta T M.AClustering Approach for Data and Structural Anonymity in Social Networks[C]//Proceedings of ACM SIGMOD International Conference on Privacy Security.New York,USA:ACM Press,2008:93-104.
  • 5Liu Kun,Terzi E.Towards Identity Anonymization on Graphs[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York,USA:ACM Press,2008:93-106.
  • 6Ada J,Liu Jia.K-Isomorphism:Privacy Preserving Network Publication Against Structural Attacks[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York,USA:ACM Press,2010:459-470.
  • 7Li Yidong,Shen Hong.Anonymizing Graphs Against Weight-based Attacks[C]//Proceedings of IEEE Inter-national Conference on Data Mining.Washington D.C.,USA:IEEE Press,2010:491-498.
  • 8Liu Xiangyu,Yang Xiaochun.A Generalization Based Approach for Anonymizing Weighted Social Network Graphs[C]//Proceedings of IEEE International Conference on Web-age Information Management.Washington D.C.,USA:IEEE Press,2011:118- 130.
  • 9Das S,Egecioglu O,Abbadi A E.Anonymizing Weighted Social Network Graphs[C]//Proceedings of the 26th International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2010:904-907.
  • 10TsaiYu-Chuan,Wang Shyue-Liang,Kao Hung-Yu,et al.Confining Edge Types in K-anonymization of Shortest Paths[C]//Proceedings of IEEE International Conference on Innovations in Bio-inspired Computing and Application.Washington D.C.,USA:IEEE Press,2012:318-322.

共引文献91

同被引文献50

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部