期刊文献+

融入帧间差分法的深度学习目标识别仿真研究 被引量:9

Research on simulation of deep learning target recognition based on inter-frame difference method
下载PDF
导出
摘要 目标检测与识别是数字图像处理实验的创新性实验项目。传统的目标识别算法可以识别目标类型,但不能识别目标的位置信息,且对相同目标的识别率较低。该文设计了一种基于帧间差分法的深度学习目标识别算法,即在深度学习理论构架下,将帧间差分法融入识别过程,补充增强候选框分割图像,通过NMS算法对候选框进行筛选。仿真结果表明,该算法在识别目标种类的同时还能对目标在图像中的位置进行精确标定,并可判断目标是否处于运动状态,具有较高的识别率。 Target detection and recognition are an innovative experimental project in digital image processing experiment.Traditional target recognition algorithm can recognize the type of target,but it can’t recognize the location information of the target,and the recognition rate of the same target is low.A deep learning target recognition algorithm based on frame difference method is designed.In the framework of deep learning theory,the frame difference method is applied to the recognition process,the enhanced candidate frame is segmented and the candidate frame is filtered through the NMS algorithm.The simulation results show that the algorithm can’t only recognize the type of the target,but also accurately calibrate the position of the target in the image.It can also judge whether the target is in a moving state and has a high recognition rate.
作者 王辉 于立君 孙蓉 刘朝达 高天禹 WANG Hui;YU Lijun;SUN Rong;LIU Chaoda;GAO Tianyu(College of Automation,Harbin Engineering University,Harbin 150001,China)
出处 《实验技术与管理》 CAS 北大核心 2019年第12期178-181,190,共5页 Experimental Technology and Management
基金 黑龙江省教改项目(SJGY20170505,SJGY20170506) 哈尔滨工程大学教改项目(JG2018Y06)
关键词 目标检测与识别 创新性实验项目 帧间差分法 深度学习 target detection and recognition innovative experimental project inter-frame difference method deep learning
  • 相关文献

参考文献9

二级参考文献42

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2陈平,槐春晶,罗晶.改进的BP算法用于控制图模式识别[J].机械与电子,2005,23(3):42-44. 被引量:9
  • 3刘鹏,王国宇.一种基于边缘信息的车辆检测和跟踪方法[J].中国海洋大学学报(自然科学版),2007,37(5):857-860. 被引量:3
  • 4Piccardi M. Background subtraction techniques: a review[C]//IEEE International Conference on Sys- tems, Man and Cybemeties, Sydney, Australia, 2004 :3099-3104.
  • 5Tsai D M, Lai S C. Independent component analy: sis-based background subtraction for indoor surveil- lanc([J].IEEE Transactions on Image Processing, 2009, 18(1) : 158-160.
  • 6Zhang Jie-yu, Barron J L. Optical flow at occlusion[C]//The Ninth Conference on Computer and Robot Vision, Toronto, Canada, 2012: 198-205.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//IEEE Computer Vision and Pattern Recognition,Fort Col- lins, USA, 1999: 246-250.
  • 8Zhang J, Chen C H. Moving objects detection and segmentation in dynamic video backgrounds [C]// IEEE Conference on Technologies for Homeland Se-curity, Woburn, MA,2007:64-69.
  • 9Li Li, Xu Ji-ning. Moving human detection algo- rithm based on Gaussiarl mixture model[C]///Pro- ceedings of the 29th Chinese Control Conference, Beijing, 2010 : 2853-2856.
  • 10Xu L Q,Landabaso J L, Lei g. Segmentation and tracking of multiple moving objects for intelligent video analysis[J]. BT Technology Journal, 2004, 22(3) : 140-149.

共引文献1985

同被引文献71

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部