期刊文献+

基于RBF神经网络整定的热风炉温控系统设计 被引量:10

Research of temperature control of hot blast furnace based on RBF neural network tuning
下载PDF
导出
摘要 为了提高热风炉的燃烧效率,改善热风炉温控系统的自动化程度,提出了一种基于RBF神经网络整定的PID控制策略。首先,通过RBF神经网络算法和增量式PID控制器的结合,将神经网络强大的自学习能力应用于对增量式PID参数的调整。然后,在常规热风炉温控系统的基础上,将其外环改为采用RBF神经网络整定的PID控制。热风炉温控系统中内环以煤气阀门开度为变量,外环以拱顶温度为控制变量,通过改进的串级控制来实现热风炉的燃烧优化调整。Matlab仿真分析和实际应用效果表明,RBF神经网络整定的PID控制曲线几乎无超调量,系统抗干扰能力相对传统的PID控制提高了50%。与传统的手动控制相比,所提出的控制策略使得原系统的抑制干扰能力明显增强、鲁棒性更好,在热风炉温控方面具有良好的研究和应用价值。 In order to improve the combustion efficiency of the hot blast stove and improve the automation degree of the hot blast stove temperature control system,a PID control strategy based on RBF neural network tuning is proposed.First,through the combination of the RBF neural network algorithm and the incremental PID controller,the powerful self-learning ability of the neural network is used to adjust the parameters of the incremental PID.Then,based on the conventional hot-blast stove temperature control system,the outer loop was changed to PID control using RBF neural network tuning.In the hot-blast furnace temperature control system,the inner ring takes the opening degree of the gas valve as a variable,and the outer ring takes the dome temperature as a control variable.The improved cascade control is used to optimize the combustion of the hot-blast stove.Matlab simulation analysis and practical application results show that the PID control curve set by the RBF neural network has almost no overshoot,and the anti-interference ability of the system is increased by 50%compared with the traditional PID control.Compared with the traditional manual control,the proposed control strategy makes the original system's ability to suppress interference significantly stronger and more robust.It has good research and application value in hot air furnace temperature control.
作者 张子蒙 章家岩 冯旭刚 ZHANG Zimeng;ZHANG Jiayan;FENG Xugang(School of Electrical and Information Engineering,Anhui University of Technology,Maanshan,Anhui 243032,China)
出处 《河北科技大学学报》 CAS 2019年第6期503-511,共9页 Journal of Hebei University of Science and Technology
基金 安徽省重点研究与开发计划资助项目(1804a09020094) 安徽省高校自然科学研究重点资助项目(KJ2018A0054,KJ2018A0060)
关键词 控制系统仿真技术 热风炉 温度控制 RBF神经网络 PID增量控制 常规PID控制 control system simulation technology hot blast stove temperature control RBF neural network PID incremental control conventional PID control
  • 相关文献

参考文献18

二级参考文献129

共引文献118

同被引文献69

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部