摘要
针对传统交通事故风险预测算法无法自动判别数据特征,且模型表达能力差等问题。该文提出一种基于深度学习的车联边缘网络交通事故风险预测算法,该算法首先针对车载自组织网络中采集的大量交通数据,采用边缘服务器中建立的卷积神经网络自主提取多维特征,经归一化、去均值等预处理后,再将得到的新变量输入卷积层、采样层进行训练,最后根据全连接层输出的判别值,得到模拟预测交通事故发生的风险性。仿真结果表明,该算法被验证能够预测交通事故发生的风险性,较传统的机器学习算法BP神经网络、逻辑回归具有更低的损失与更高的预测准确度。
For the problem that the traditional traffic accident risk prediction algorithm can not automatically discriminate data features,and the model expression ability is poor,a traffic accident risk prediction algorithm based on deep learning is proposed.The algorithm firstly extracts multi-dimensional features by using the convolutional neural network established in the edge server for a large amount of traffic data collected in the edge network of vehicles.After normalization,de-equalization and other pre-processing,the new variables are input into the convolutional layer and the pooling layer for training.Finally,based on the output discrimination value of the fully connected layer,the risk of traffic accidents can be predicted by simulation.The simulation results show that the algorithm is validated to predict the risk of traffic accidents,and has lower loss and higher prediction accuracy than the traditional machine learning BP neural network algorithm and Logical Regression algorithm.
作者
赵海涛
程慧玲
丁仪
张晖
朱洪波
ZHAO Haitao;CHENG Huiling;DING Yi;ZHANG Hui;ZHU Hongbo(Ministry of Education Ubiquitous Network Health Service System Engineering Research Center,Nanjing 210003,China;Jiangsu Key Wireless Communication Laboratory,Nanjing 210003,China;College of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2020年第1期50-57,共8页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61771252)
江苏省自然科学基金(BK20171444)
江苏省高校重点自然科学研究重大项目(18KJA510005)
江苏省“六大人才高峰”B类资助项目(DZXX-041)
江苏省科协青年科技人才托举工程资助培养项目
江苏省研究生科研创新计划项目(KYCX19_0949)~~
关键词
车联边缘网络
机器学习
卷积神经网络
边缘服务器
Edge network of vehicles
Machine learning
Convolutional neural network
Edge server