期刊文献+

自适应多策略花朵授粉算法 被引量:2

Self-adaptive flower pollination algorithm with multiple strategies
下载PDF
导出
摘要 针对花朵授粉算法极易陷入局部最优解且寻优精度不高的问题,提出自适应多策略花朵授粉算法(self-adaptive flower pollination algorithm with multiple strategies,SMFPA)。利用锚点策略提高种群的多样性,采用摄动策略改善全局勘探能力,采用局部搜索增强策略提升其开采最优解的能力。为验证SMFPA的性能,比较5种算法在解决12个测试问题上的寻优结果,实验结果表明,在寻优速度以及寻优精度方面,SMFPA算法表现更优。通过比较算法在管柱设计问题上的寻优结果,进一步评估SMFPA的寻优性能。 To solve the problem of being easy to plunge into local extremum and the low accuracy computation in basic flower pollination algorithm,a self-adaptive flower pollination algorithm with multiple strategies(SMFPA)was presented.An anchor point strategy was used to enhance the diversity of population.Perturbation strategy was introduced to improve the global exploration capability,and a local search enhanced strategy was adopted to improve the ability of exploiting optimal solution.To verify the performance of SMFPA,the optimization results of five algorithms on twelve test functions were compared.Experimental results show that SMFPA performs better in convergence speed and optimization accuracy.The optimization performance of SMFPA was further evaluated by comparing the optimization results of the algorithm in the tubular column design problem.
作者 瞿博阳 李国森 焦岳超 柴旭朝 闫李 QU Bo-yang;LI Guo-sen;JIAO Yue-chao;CHAI Xu-zhao;YAN Li(School of Electronic and Information Engineering,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《计算机工程与设计》 北大核心 2020年第2期440-448,共9页 Computer Engineering and Design
基金 国家自然科学基金项目(61673404、61873292、61976237) 河南省高等学校重点科研基金项目(19A120014) 河南省高校创新人才基金项目(16HASTIT033) 中国纺织工业联合会科技指导性基金项目(2017054、2018104)
关键词 花朵授粉算法 寻优性能 自适应 工程优化 多策略 flower pollination algorithm optimization ability self-adaptation engineering optimization multiple strategies
  • 相关文献

参考文献11

二级参考文献96

  • 1周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 2吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4贺毅朝,王熙照,寇应展.一种具有混合编码的二进制差分演化算法[J].计算机研究与发展,2007,44(9):1476-1484. 被引量:50
  • 5Storn R,Price K. Differential Evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].{H}Journal of Global Optimization,1997,(4):341-359.
  • 6Storn R,Price K. Minimizing the real functions of the ICEC' 96 contest by differential evolution[A].1996.
  • 7Zaharie D. Influence of crossover on the behavior of Differential Evolution Algorithms[J].{H}Applied Soft Computing Journal,2009,(3):1126-1138.
  • 8Epitmpakis M G,Pavlidis N G,Plagiamkos V P. Enhancing differential evolution utilizing proximity-based mutation operators[J].{H}Evolutionary Computation,2011,(1):99-119.
  • 9Tokuda I,Aihara K,Nagashima T.Adaptive annealing for chaotic optimization. Physical Review . 1998
  • 10Yang X.S.Flower Pollination Algorithm for Global Optimization. Unconventional Computation and Natural Computation (UCNC 2012) . 2012

共引文献149

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部