期刊文献+

遗传算法确定特征权重值的图像分类 被引量:5

Image classification to determine feature weight values by genetic algorithm
下载PDF
导出
摘要 针对多种特征权重值无法合理设置,得到的检索效果无法达到用户要求的问题,将多种特征融合在一起,对图像进行分类处理,可以弥补单一特征检索带来的局限性问题,并采用遗传算法对图像特征进行提取并进行优化,以获取最优的特征权重值,将获取的最优权重值用于图像检索与分类中。运用加权融合方法对图像的颜色、纹理等特征进行加权处理,可以有效实现多种特征融合的目的。通过实验证明,基于遗传算法确定特征权重值的图像检索与分类方法具有较强的学习效果,可以自动为特征权值进行赋值,大大提高了图像分类的简洁性,提升了图像检索的效果。 In order to deal with the fact that it is difficult to set multiple feature weight values reasonably and the retrieval results fail to satisfy user′s requirements,multiple features are fused to classify images,which can make up the limitation of single feature retrieval.The genetic algorithm is used to extract and optimize the image features to obtain the optimal feature weight values for image retrieval and classification.The image features like color and texture can be weighted by the weighted fusion method,which can effectively achieve the purpose of multi⁃feature fusion.The experiment results show that the method of image retrieval and classification to determine feature weight values by genetic algorithm has obvious learning effect and can automatically assign values to feature weight,which greatly improves the simplicity of image classification and the effect of image retrieval.
作者 唐彩红 TANG Caihong(Qilu Medical University,Zibo 255300,China)
机构地区 齐鲁医药学院
出处 《现代电子技术》 北大核心 2020年第3期58-61,65,共5页 Modern Electronics Technique
关键词 遗传算法 特征权重值 图像分类 卷积神经网络 初始种群 检索率 genetic algorithm feature weight value image classification convolutional neural network initial population retrieval ratio
  • 相关文献

参考文献5

二级参考文献41

  • 1莫蓉,田国良,孙惠斌.基于遗传算法优化的BP神经网络在粗糙度预测上的应用[J].机械科学与技术,2015,34(5):729-732. 被引量:7
  • 2周志红,周新聪,袁成清.基于过滤器-封装器组合模型的故障特征选择算法[J].中国机械工程,2007,18(16):1988-1991. 被引量:2
  • 3SIMPSON J J, MCINTIR J T. A recurrent neural network elassifier for improved retrievals of area extent of snow cover[J]. IEEE Trans. Geosciences and Remote Sensing,2001,39 : 2135-2147.
  • 4SMEULDERS A W M, WORRING M, SANTINI S, et al. Content -based image retrieval at the end of the early years[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000,22 (12) : 1-32.
  • 5LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. Internation- al Journal of Remote Sensing, 2007,28(5 ) : 823.
  • 6CHEN Y X, WANG J Z. Image categorization by learning and reasoning with regions [J]. Journal of Machine Learning Re- search, 2004,5(8) :913-939.
  • 7ZHAO G, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J].IEEE Trans. Pattern Analysis and Machine Intelligence, 2007,27 (6) :915-928.
  • 8ZHANG B C, GAO Y S,ZHAO S Q, et al. Local derivative pat- tern versus local binary pattern: face recognition with high-order local pattern descriptor[J]. IEEE Trans. Image Processing, 2010, 19(2) :533-544.
  • 9Dash M,Liu H.Feature selection for classification[J].Intelligent data analysis,1997,1(3):131-156.
  • 10Liu B,Li S,Wang Y,et al.Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection(PSFS)[J].Biochemical and biophysical research communications,2007,358(1):136-139.

共引文献30

同被引文献75

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部