摘要
随着分布式能源渗透率的不断提高,构建以楼宇为单位的能量管理系统成为用户侧能源消费结构变革的必然趋势。文章以含有光伏和储能装置的楼宇为对象,根据负荷特性将楼宇负荷分为可调度负荷和不可调度负荷,建立楼宇电费最低和光伏最大本地消纳模型,研究这2个模型在不同权重系数下的目标函数,采用改进离散二进制粒子群优化算法(discrete binary particle swarm optimization algorithm,DBPSO)优化可调度负荷的工作时间。在不同情形下进行仿真,验证了所提模型在光伏本地消纳和楼宇能量管理方面的有效性和经济性。
With the continuous improvement of distributed energy penetration rate,establishing a building-based energy management system has become an inevitable trend in the transformation of user-side energy consumption structure. This paper takes building with photovoltaic power and energy storage as the object,divides the building load into un-schedulable and schedulable loads according to the load characteristics,and establishes the model of lowest building electricity cost and the largest local accommodation of PV power. With the goal of two models under different weight coefficients,the improved discrete binary particle swarm optimization algorithm( DBPSO) is used to optimize the working time of schedulable load.Simulations are carried out under different conditions to verify the effectiveness and economy of the proposed model in local PV accommodation and building energy management.
作者
蔡钦钦
杨晓华
朱永强
CAI Qinqin;YANG Xiaohua;ZHU Yongqiang(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Beijing 102206,China)
出处
《电力建设》
北大核心
2020年第1期23-31,共9页
Electric Power Construction
基金
国家重点研发计划项目(2018YFB0904701)~~
关键词
楼宇能量管理系统
光伏消纳
储能调度
离散二进制粒子群优化算法(DBPSO)
building energy management system
photovoltaic accommodation
energy storage scheduling
discrete binary particle swarm optimization algorithm(DBPSO)