期刊文献+

智能科学家——科技信息创新引领的下一代科研范式 被引量:15

AI Scientist: The Next Generation Scientific Research Paradigm Driven by Scientific and Technological Information
下载PDF
导出
摘要 科技创新是国家发展与民族复兴的强大引擎。提高科技创新能力必须透彻理解科研活动本身,包括科学研究发展规律、科技竞争形式特点、科研人员行为方式、科研成果传播影响等。科技信息是大量科研活动信息的承载和记录,科技信息的智能挖掘服务可以有效支撑科研创新能力研究。文章提出"智能科学家"的理念,首先分析了科研范式的演变与发展趋势,然后探讨了科技信息引领下的辅助科研创新、协助科研创新、自主科研创新三阶段构想,最终实现"智能科学家"的目标,最后介绍了"智能科学家"需要依托的若干关键技术方向。 Scientific and technological innovation is a powerful engine for national development and the revival of our nation. To improve the capability of scientific and technological innovation,we must thoroughly understand the scientific research activities themselves,including the laws of scientific research development,the characteristics of technological competitions,the behavior of researchers,the impact of scientific research outcomes,etc. Scientific and technological Information records a large volume of scientific research activities themselves. The intelligent mining and application of such information can effectively support the improvement of scientific and technological innovation. In this paper,we propose the concept of"AI Scientist". We discuss the evolution and development trend of scientific research paradigms firstly. We then introduce the three-phase building blocks towards the novel scientific and technological information driven framework,including key innovations to support,to assist and eventually to automate basic scientific research and development. Finally,we introduce several key technical directions of"AI Scientist".
出处 《情报理论与实践》 CSSCI 北大核心 2020年第1期1-5,17,共6页 Information Studies:Theory & Application
关键词 智能科学家 科技信息 科研范式 科研创新 领域知识 AI scientist scientific and technological information scientific research paradigm scientific research innovation domain knowledge
  • 相关文献

参考文献3

二级参考文献19

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献1612

同被引文献236

引证文献15

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部