期刊文献+

Deep Learning Based Hand Gesture Recognition and UAV Flight Controls 被引量:11

Deep Learning Based Hand Gesture Recognition and UAV Flight Controls
原文传递
导出
摘要 Dynamic hand gesture recognition is a desired alternative means for human-computer interactions.This paper presents a hand gesture recognition system that is designed for the control of flights of unmanned aerial vehicles(UAV).A data representation model that represents a dynamic gesture sequence by converting the 4-D spatiotemporal data to 2-D matrix and a 1-D array is introduced.To train the system to recognize designed gestures,skeleton data collected from a Leap Motion Controller are converted to two different data models.As many as 9124 samples of the training dataset,1938 samples of the testing dataset are created to train and test the proposed three deep learning neural networks,which are a 2-layer fully connected neural network,a 5-layer fully connected neural network and an 8-layer convolutional neural network.The static testing results show that the 2-layer fully connected neural network achieves an average accuracy of 96.7%on scaled datasets and 12.3%on non-scaled datasets.The 5-layer fully connected neural network achieves an average accuracy of 98.0%on scaled datasets and 89.1%on non-scaled datasets.The 8-layer convolutional neural network achieves an average accuracy of 89.6%on scaled datasets and 96.9%on non-scaled datasets.Testing on a drone-kit simulator and a real drone shows that this system is feasible for drone flight controls. Dynamic hand gesture recognition is a desired alternative means for human-computer interactions. This paper presents a hand gesture recognition system that is designed for the control of flights of unmanned aerial vehicles(UAV). A data representation model that represents a dynamic gesture sequence by converting the 4-D spatiotemporal data to 2-D matrix and a 1-D array is introduced. To train the system to recognize designed gestures, skeleton data collected from a Leap Motion Controller are converted to two different data models. As many as 9 124 samples of the training dataset, 1 938 samples of the testing dataset are created to train and test the proposed three deep learning neural networks, which are a 2-layer fully connected neural network, a 5-layer fully connected neural network and an 8-layer convolutional neural network. The static testing results show that the 2-layer fully connected neural network achieves an average accuracy of 96.7% on scaled datasets and 12.3% on non-scaled datasets. The 5-layer fully connected neural network achieves an average accuracy of 98.0% on scaled datasets and 89.1% on non-scaled datasets. The 8-layer convolutional neural network achieves an average accuracy of 89.6% on scaled datasets and 96.9% on non-scaled datasets. Testing on a drone-kit simulator and a real drone shows that this system is feasible for drone flight controls.
机构地区 Monmouth University
出处 《International Journal of Automation and computing》 EI CSCD 2020年第1期17-29,共13页 国际自动化与计算杂志(英文版)
关键词 Deep learning neural networks hand gesture recognition Leap Motion Controllers DRONES Deep learning neural networks hand gesture recognition Leap Motion Controllers drones
  • 相关文献

同被引文献43

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部