期刊文献+

基于RBF神经网络的ABS滑模变结构控制研究 被引量:1

Study on ABS sliding mode variable structure control based on RBF neural network
下载PDF
导出
摘要 针对汽车制动过程中防抱死制动系统(ABS)具有的非线性、时变性和不确定性,设计了以最佳滑移率为目标的滑模变结构控制器,并且采用径向基神经网络(RBF)实时调整滑模变结构控制器参数,以削弱常规滑模变结构控制的抖振现象。利用MATLAB/Simulink仿真平台搭建单轮车辆制动模型,并进行ABS控制策略的仿真实验。仿真结果表明:在指定路面上制动时,基于RBF神经网络的滑模变结构控制策略能够有效削弱常规滑模变结构控制输出的高频抖振,并能使车辆具有良好的制动效果。 Aiming at the nonlinearity,time-varying and uncertainty of anti-lock braking system(ABS)in the process of automobile braking,a sliding mode variable structure controller with optimal slip rate is designed.The parameters of sliding mode variable structure controller are adjusted in real time using radial basis function(RBF)neural network to weaken the chattering phenomenon of conventional sliding mode variable structure control.The MATLAB/Simulink simulation platform was used to build a single-wheel vehicle braking model,and the simulation experiment of ABS control strategy was carried out.The simulation results show that the sliding mode variable structure control strategy based on RBF neural network can effectively weaken the high frequency buffeting of the output of conventional sliding mode variable structure control,and enable the vehicle a good braking effect when braking on specified road surface.
作者 夏志成 邹广德 董威 XIA Zhicheng;ZOU Guangde;DONG Wei(School of Transportion and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2020年第3期44-48,共5页 Journal of Shandong University of Technology:Natural Science Edition
关键词 防抱死制动系统 最佳滑移率 滑模变结构控制 径向基神经网络 anti-lock braking system optimal slip rate sliding mode variable structure control radial basis function neural network
  • 相关文献

参考文献12

二级参考文献68

  • 1胡启国,任龙.车辆ABS参数自调节模糊PID控制仿真[J].重庆交通大学学报(自然科学版),2012,31(2):344-348. 被引量:18
  • 2徐国卿,徐坤,李卫民.电动汽车动力学控制研究进展[J].集成技术,2012,1(1):6-14. 被引量:9
  • 3张陵,诸德培.车轮防抱死制动滑移模式控制律的理论研究[J].汽车工程,1996,18(1):1-6. 被引量:7
  • 4尹凤杰,井元伟,杨晖.基于模糊滑模控制的主动队列管理算法[J].东北大学学报(自然科学版),2006,27(5):473-476. 被引量:6
  • 5Wellstead P E, Pettit N B O L. Analysis and redesign of an antilock brake system [J].IEE Proc Control Theory Appl, 1997,144(5) :413 - 426.
  • 6Chun K, Sunwoo M. Wheel slip control with moving sliding surface[J]. IEEE Transaction on Automotive Technology, 2004,5(2) :23 - 133.
  • 7Glavic M. Design of a resistive brake continUer for power system stability enhancement using reinforcement learning[J]. IEEE Transaction on Control System Technology, 2005, 13 (5) :743 - 751.
  • 8Jiang F J, Gao Z Q. An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS[J]. IEEE Transaction on Control Applications, 2000,1( 1 ) : 490 - 495.
  • 9Jiang F J, Gao Z Q. An application of nonlinear PID control to a class of truck ABS problems[J]. IEEE Process Decision and Control, 2001,1(1):516-521.
  • 10Huang Y, Lin S J. Adaptive control using neural net with sliding surface for vehicle suspension control [ J ]. IEEE Transaction on Fuzzy System, 2003,11 (4) : 550 - 559.

共引文献50

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部