期刊文献+

飞机NACA进气口性能的数据驱动预测模型研究 被引量:1

Research on Data Driven Prediction Model of Aircraft NACA Intake Performance
下载PDF
导出
摘要 冲压空气进气口是民机环控系统性能实现的关键。针对飞机不同结构参数的NACA进气口,提供三种数据驱动的预测模型,对其性能进行预测。分析多元线性回归模型、二阶多项式模型、人工神经网络三种预测模型的原理,建立相应的数学模型,并在MATLAB实现三种预测模型的代码编译。以某一型号客机为例,进行ANSYS CFX流场仿真,获取不同结构参数对应性能指标的数据库,基于数据库对比不同预测模型下的误差,并分析出适用于飞机NACA进气口不同结构参数性能预测的模型。对较优的BP神经网络模型进行改进,得到更加适合的BP神经网络改进模型。 Ram air inlet is critical for realizing the performance of civil aircraft environmental control system.This paper provides three data driven prediction models for NACA air inlet with different structural parameters of aircraft to predict its performance.This paper analyzes the principles of the three prediction models,which are multivariate linear regression model,second order polynomial model and Artificial Neural Networks,establishes the corresponding mathematical model,and implements the code compilation of the three prediction models in MATLAB.Taking a certain type of civil aircraft as an example,the simulation based on ANSYS CFX was carried out to obtain the database of corresponding performance indexes of different structural parameters.Based on the database,the errors of different prediction models were compared,and which model is suitable for predicting the performance of NACA inlet with different structural parameters was analyzed.Finally,this paper improves the better BP neural network model and obtains the more suitable BP neural network improved model.
作者 陈常栋 裴后举 吴博宇 崔永龙 邹燚涛 蒋彦龙 CHEN Chang-dong;PEI Hou-ju;WU Bo-yu;CUI Yong-long;ZOU Yi-tao;JIANG Yan-long(Key Laboratory of Aircraft Environment Control and Life Support of Ministry of Industry and Informatization Technology,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210000,China;College of Energy and Power Engineering,Jiangsu University of Science and Technology,Zhenjiang 212000,China)
出处 《航空计算技术》 2020年第1期71-75,共5页 Aeronautical Computing Technique
基金 江苏省高校优势学科建设工程项目资助。
关键词 多元线性回归模型 二阶多项式模型 改进BP神经网络 飞机NACA进气口 气动性能预测 multiple linear regression model second order polynomial model improved BP neural network NACA inlet of aircraft prediction of aerodynamic performance
  • 相关文献

参考文献10

二级参考文献51

  • 1党晓民,成杰,林丽.我国大型飞机环境控制系统研制展望[J].航空工程进展,2010,1(1):21-24. 被引量:16
  • 2R P Lippman. An Introduction to Computing with Neural Nets [ J ]. IEEE ASSP Magazine, 1987(4) :4 -22.
  • 3Anclers Krogh,John A Hertz. A Simple Weight Decay Can Improve Generalization[ G ]//Advances in Neural Information Processing Systems. San Mateo: Morgan Kaufman, 1992:950 - 957.
  • 4徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.20.
  • 5[美]S. M. 凯依著 黄建国 武延祥 杨世兴译.现代谱估计原理与应用[M].科学出版社,1994..
  • 6VinayK.Ingle John G. Proakis著 陈怀深 王朝英 高西全译.数字信号处理及其MATLAB实现[M].电子工业出版社,1998..
  • 7Lim & Oppenheim,eds. Advanced Topics in Signal Processing[M]. Prentice-hall International,Inc.,1996.
  • 8Roger A H,Charles R J.矩阵分析[M].杨奇,译.北京:机械工业出版社,2005.1~154.
  • 9高惠璇.统计计算[M].北京:北京大学出版社,2005.
  • 10Hagan M T,Demuth H B.神经网络设计[M].戴葵,译.北京:机械工业出版社,2005.

共引文献297

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部