期刊文献+

基于活跃熵的序列图像脆弱性增强仿真

Simulation of Sequence Image Vulnerability Enhancement Based on Active Entropy
下载PDF
导出
摘要 针对传统序列图像未对相邻脉冲图像进行精确对准,导致序列图像脆弱性的增强效果较差等问题,提出基于活跃熵的序列图像脆弱性增强模拟方法。利用对均匀运动目标多个相邻脉冲的时延时间伸缩分布图的特征提取,获取序列图像的运动参数;通过传统的相关成像原理获取到目标散射点的时延时间分布像,将时延伸缩分布像转换为序列图像的几何像;再通过图像熵技术对多个相邻脉冲图像进行精确对准,以达到序列图像脆弱性增强的目的。为了验证序列图像增强效果进行仿真,充分验证了所提方法的实用性以及优势。 In traditional sequence images,the adjacent pulse images are not precisely aligned.Therefore,this article presented a simulation method to enhance sequence image vulnerability based on active entropy.At first,the motion parameters of sequence image were obtained by extracting the features of time-delay stretching distribution of adjacent pulses of uniform moving target.And then,the delay time distribution image of target scattering point was obtained by the traditional imaging principle.The image of time-delay stretching distribution was converted into a geometric image of sequence image.Moreover,the image entropy technique was used to accurately align with multiple adjacent pulse images,so as to achieve the enhancement of vulnerability in sequence image.In order to verify the en?hancement effect of sequence image,the practicality and advantages of the proposed method are fully proved by simulation.
作者 高尚 赵昕 GAO Shang;ZHAO Xin(College of Information and Technology Science,Jilin Agricultural University,Changchun Jilin 130118,China)
出处 《计算机仿真》 北大核心 2020年第3期207-210,223,共5页 Computer Simulation
关键词 活跃熵 序列图像 脆弱性增强 仿真 Active entropy Sequence image Vulnerability enhancement Simulation
  • 相关文献

参考文献12

二级参考文献108

  • 1李青,郑南宁,张雪涛,程洪.车载摄像机的一种简易标定方法[J].机器人,2003,25(z1):626-630. 被引量:5
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3翟艺书,柳晓鸣,涂雅瑗,陈亚宁.一种改进的雾天降质图像的清晰化算法[J].大连海事大学学报,2007,33(3):55-58. 被引量:17
  • 4FAN Zun-lin, BI Du-yan, HE Lin-yuan, et al. Noise suppression and details enhancement for infrared image via novel prior[J]. Infrared Physics & Technology, 2016, 74: 44-52.
  • 5JOBSON DANIEL J, RAHMAN Zia-ur, WOODELL Glenn A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 4 51-462.
  • 6KIMMEL Ron, ELAD Michael, SHAKED Doron, et al. A variation framework for Retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7-23.
  • 7JOBSON Daniel J, RAHMAN Zia-ur, WOODELL Glenn A. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
  • 8ELAD Michael. Retinex by two bilateral filters[C]//Scale Space and PDE Methods in Computer Vision Lecture Notes in Computer Science, 2005, 3459: 217-229.
  • 9LEE Jong-Sen. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165-168.
  • 10Yang Q X, Yang R G, Davis J, et al. Spatial-depth super resolution for range images[C]. USA: IEEE, 2007 : 1-8.

共引文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部