期刊文献+

基于特征融合的行人重识别算法

Research on the person re-identification algorithm based on feature fusion
下载PDF
导出
摘要 为解决实际行人重识别系统中识别率低、识别速度慢的问题,从创新和工程应用出发,提出了一种行人重识别算法。对行人图片进行预处理,采用色调、饱和度、亮度(hue,saturation,value,HSV)空间非线性量化的方法构建颜色命名空间,对人体分区域预识别来提高检测效率;对备选目标的整幅图像提取HSV和方向梯度直方图(histogram of oriented gradient,HOG)作为整体特征并在滑动窗口内提取颜色命名(color naming,CN)特征和2个尺度的尺度不变特征(scale invariant local pattern,SILTP),采用本文融合算法得到新的特征;在3个数据集上进行行人重识别,融合的特征在2种度量学习算法的Rank1平均提高了2.4%和3.3%。实验结果表明该算法能够提高重识别精度。 Starting from the innovation and engineering application,a new pedestrian re-identification algorithm was proposed,which mainly solved the problem of low recognition rate and slow recognition speed in the actual pedestrian recognition system.Preprocessing the pedestrian image,using the hue,saturation,and value(HSV)spatial nonlinear quantization method to construct the color namespace,pre-identifying the human sub-regions to improve the recognition speed;extracting the HSV and direction gradient histogram of the entire oriented gradient(HOG)features as the overall feature;and sliding on the entire image of the candidate target,the color naming(CN)features and the scale-invariant local pattern(SILTP)features of the two scales are extracted in the window,getting new features by new fusion algorithms.Pedestrian re-identification is carried out on three data sets.The fusion features improve the average Rank1s of two metric learning algorithms by 2.4%and 3.3%on average.Experimental results show that the algorithm can improve the accuracy of re-identification.
作者 钱华明 王帅帅 王晨宇 QIAN Huaming;WANG Shuaishuai;WANG Chenyu(College of Automation,Harbin Engineering University,Harbin 150001)
出处 《应用科技》 CAS 2020年第2期29-34,43,共7页 Applied Science and Technology
关键词 行人重识别 特征提取 非线性量化 颜色命名空间 直方图 特征融合 度量学习 CMC曲线 pedestrian re-identification(Re-ID) feature extraction nonlineaer quantization color namespace histogram feature fusion metric learning CMC curve
  • 相关文献

参考文献10

二级参考文献62

  • 1赖银汉,周军.英国视频监控系统建设情况考察报告[J].广东公安科技,2006,14(1):102-104. 被引量:8
  • 2Gray D, Brennan S, and Tao H. Evaluating appearance models for recognition, reacquisition, and tracking[C]. IEEE International Workshop on Performance Evaluation for Tracking and Surveillance. Rio de Janeiro, Brazil, 2007: 41-47.
  • 3Wang H, Bao X, Choudhury R R, et al. Insight: recognizing humans without face recognition[C]. Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Georgia, USA, 2013, 7.
  • 4Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367.
  • 5Cheng D S, Cristani M, Stoppa M, et al. Custom pictorial structures for re-identification[C]. British Machine Vision Conference, Dundee, UK, 2011, 6.
  • 6Bazzani L, Cristani M, Perina A, et al. Multiple-shot person re-identification by chromatic and epitomic analyses[J]. Pattern Recognition Letters, 2012, 33(7): 898-903.
  • 7Ma B, Su Y, and Jurie F. Local descriptors encoded by fisher vectors for person re-identification[C]. European Conference on Computer Vision, Florence, Italy, 2012: 413-422.
  • 8Hu Y, Liao S, Lei Z, et al. Exploring structural information and fusing multiple features for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 794-799.
  • 9Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010: 435-440.
  • 10Bak S, Corvee E, Bremond F, et al. Multiple-shot human re-identification by mean riemannian covariance grid[C]. IEEE International Conference on Advanced Video and Signal-Based Surveillance, Klagenfurt, Austria, 2011: 179-184.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部