期刊文献+

基于车道映射矩阵的多车道车辆计数系统 被引量:1

Multi-lane vehicle counting system based on lane mapping matrix
下载PDF
导出
摘要 针对城市交通路口的多车道车辆数量统计问题,提出基于车道映射矩阵的车道划分方案。根据车道映射矩阵分布情况判断车道中心线位置,利用相邻车道中心线间的距离对车道进行划分,与车辆计数算法结合,实现多车道车辆计数系统。该方案能够减少环境因素对车道划分的影响,在白天与夜晚情况下均取得较好效果。实验结果表明,该方案准确率为93.6%,能够适应复杂道路,多车道实时车辆计数系统准确率能够达到91%以上,在保证系统实时性的基础上,提供了较高的系统准确性和鲁棒性。 To solve the problem of multi-lane vehicle counting at urban traffic intersections,a lane division scheme based on lane mapping matrix was proposed.The position of the lane centerline was determined according to the distribution of the lane mapping matrix,and the lane was divided by the distance between the adjacent lane centerlines.The multi-lane vehicle counting system was realized by combining with the vehicle counting algorithm.The proposed scheme can reduce the influence of environmental factors,and achieves better results in both day and night situations.Experimental results show that the accuracy of the proposed scheme is 93.6%,which can adapt to complex roads.The accuracy of multi-lane real-time vehicle counting system can reach more than 91%,providing better performance on system accuracy and robustness on the basis of ensuring the real-time performance of the system.
作者 殷妍 陈庆奎 YIN Yan;CHEN Qing-kui(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《计算机工程与设计》 北大核心 2020年第5期1481-1488,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(61572325、60970012) 高等学校博士学科点专项科研博导基金项目(20113120110008) 上海重点科技攻关基金项目(14511107902、16DZ1203603) 上海市工程中心建设基金项目(GCZX14014) 上海智能家居大规模物联共性技术工程中心基金项目(GCZX14014) 上海市一流学科建设基金项目(XTKX2012) 沪江基金研究基地专项基金项目(C14001)。
关键词 多车道 车道映射矩阵 车道中心线 车道划分 车辆计数 multi-lane lane mapping matrix lane centerline lane division vehicle counting
  • 相关文献

参考文献16

二级参考文献87

  • 1王晓云,王永忠.基于线性双曲线模型的车道线检测算法[J].杭州电子科技大学学报(自然科学版),2010,30(6):64-67. 被引量:8
  • 2李香平,杨兆选.基于虚拟线的视频交通检测新算法[J].电子测量与仪器学报,2005,19(4):30-33. 被引量:6
  • 3胡以静,李政访,胡跃明.基于光流的运动分析理论及应用[J].计算机测量与控制,2007,15(2):219-221. 被引量:29
  • 4ALBIOL A,SILLA M J. Video analysis using comers motion analysis[A].2009.31-38.
  • 5CRISTANI M,RAGHAVENDRA R,BUE D A. Human behavior analysis in video surveillance:a social signal processing perspective[J].Neurocomputin9,2013,(01):86-97.
  • 6LAKSHMI D C,REVATHí R. Video surveillance systems:a survey[J].International Journal of Computer Science Issues,2011,(04):635-642.
  • 7RABAUD V,BELONGIE S. Counting crowded moving objects[A].Washington DC:IEEE Computer Socitey,2006.705-711.
  • 8KRAHNSTOEVER N,YU T,PATWARDHAN K A. Multicamera person tracking in crowded environments[A].2009.1-7.
  • 9MARCENARO L,FERRARI M,MARCHESOTTI L. Multiple object tracking under heavy occlusions by using Kalman filters based on shape matching[A].2002.341-344.
  • 10LIEN C C,HUANG Ya-lin,HAN C C. People counting using multimode multi-target tracking scheme[A].2009.1018-1021.

共引文献1951

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部