摘要
图像属性标注是一种更细化的图像标注,它能缩小认知与特征间“语义鸿沟”.现有研究多基于单特征且未挖掘属性蕴含的深层语义,故无法准确刻画图像内容.改进有效区域基因选择算法融合图像特征,并设计迁移学习策略,实现材质属性标注;基于判别相关分析挖掘特征间跨模态语义,以改进相对属性模型,标注材质属性蕴含的深层语义-实用属性.实验表明:材质属性标注精准度达63.11%,较最强基线提升1.97%;实用属性标注精准度达59.15%,较最强基线提升2.85%;层次化的标注结果能全面刻画图像内容.
Image attribute annotation is a refined method of image annotation.It can narrow the“semantic gap”between cognition and features.However,a single feature is used to characterize images and the deep-level semantics are not fully explored.So annotations cannot depict images comprehensively.The traditional effective range based gene selection algorithm is modified to complete feature fusion.And transfer learning strategy is designed to complete material annotation.The cross-modal semantics among features are mined by the discriminant correlation analysis algorithm.So the relative attribute model is optimized to complete deep-level semantics(practical attributes)annotation.Experimental results demonstrate:Material attributes annotation accuracy reaches 63.11%,which is improved by 1.97%compared with baseline.Practical attributes annotation accuracy reaches 59.15%,which is improved by 2.85%compared with baseline.The proposed hierarchical annotation mechanism can more comprehensively depict images.
作者
张红斌
蒋子良
熊其鹏
武晋鹏
邬任重
袁天
姬东鸿
ZHANG Hong-bin;JIANG Zi-liang;XIONG Qi-peng;WU Jin-peng;WU Ren-zhong;YUAN Tian;JI Dong-hong(School of Software,East China Jiaotong University,Nanchang,Jiangxi 330013,China;School of Information Engineering,East China Jiaotong University,Nanchang,Jiangxi 330013,China;School of Cyber Science and Engineering,Wuhan University,Wuhan,Hubei 430072,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2020年第4期790-799,共10页
Acta Electronica Sinica
基金
国家自然科学基金(No.61762038,No.61861016)
教育部人文社会科学研究规划基金项目(No.17YJAZH117)
江西省自然科学基金(No.20171BAB202023)
江西省科技厅重点研发计划(No.20171BBG70093,No.20192BBE50071)
江西省教育厅科技项目(No.GJJ190323)。
关键词
图像标注
有效区域基因选择
相对属性
迁移学习
跨模态语义
判别相关分析
image annotation
effective range based gene selection
relative attribute
transfer learning
cross-modal semantics
discriminant correlation analysis