期刊文献+

基于植保大数据的病虫害移动智能识别系统——随识 被引量:3

Sensee:A Mobile Intelligent Pest and Disease Recognition System Based on Agricultural Plant Protection Big Data
下载PDF
导出
摘要 应用大数据、人工智能和深度学习技术,研发了一款基于手机移动端的农作物病虫害移动智能识别系统——随识;该系统可安装到智能手机上,通过手机拍照,即可实现农作物病虫害从鉴定识别到防治技术等方面的服务,针对一个病虫害,提供包括鉴定识别、特征描述、分布范围、危害损失、发生规律、防治技术和防控信息等内容,可为广大植保技术人员和使用者开展病虫害防治提供较为全面的帮助.本文在介绍随识病虫害识别系统架构的基础上,简要介绍了系统的下载安装、注册登录、智能识别、圈记、病虫知识库和用户信息等功能模块的使用方法,以期帮助用户更好地使用该系统. The authors have developed Sensee--a mobile intelligent pest and disease recognition system in mobile terminal,employing big data,artificial intelligence and deep learning techniques.This system can be deployed in Android,Apple and other smartphones,in which crop pest and disease monitoring services,including recognition and prevention,can be achieved through the camera.Furthermore,for any pest or disease in a crop,this system can provide identification,feature description,distribution area,hazard loss,occurrence and prevention technology.We believe that Senseecan provide a comprehensive help for agricultural plant protection technicians to carry out pest control work.Based on an introduction of Sensee pest and recognition system,this paper also gives a guidance to download,installandregister,and describes itsfunctions such as intelligent recognition,circling marking,pests’database and user’s information,so as to help the user make better use of the system.
作者 谢成军 刘振东 张炜 陈天娇 陆明红 刘万才 XIE Cheng-jun;LIU Zhen-dong;ZHANG Wei;CHEN Tian-jiao;LU Ming-hong;LIU Wan-cai(Institute of Intelligent Machines,Hefei Instituteof Physical Science,Chinese Academy of Sciencs,Hefei 230031,China;Institute for the Control of Agrochemicals,Ministry of Agriculture and Rural Affairs,Beijing 100125,China;Anhui Zhongke Sense Industrial Technology Research Institute Co.Ltd.,Wuhu Anhui 241000,China;National Agro-Tech Extension and Service Center,Beijing 100125,China)
出处 《植物医生》 2020年第2期53-59,共7页 Plant Doctor
基金 国家重点研发计划(2018YFD0200300) 粮食丰产增效科技创新专项(2016YFD0300700).
关键词 植保大数据 人工智能 深度学习 自动识别 防控决策 随识APP plant protection big data artificial intelligence deep learning automatic recognition decisionmaking of prevention and control Sensee App
  • 相关文献

参考文献11

二级参考文献109

共引文献367

同被引文献87

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部