摘要
针对地下水位动态预测常用方法中存在的不足,在借鉴相似预测理论思想的基础上,提出以最大相似度准则来刻画时间序列预测中各个样本的关联性,给出了以最大联系度来定量测度地下水位历史样本之间的相似度,提出了改进的非参数时间序列模型在地下水位动态预报的建模步骤和求解思路,并将五元联系度模型应用于中牟县18号观测井的地下水埋深年内预报中。预报结果表明,改进的非参数地下水位动态预报模型预测值与实测值具有较好的拟合优度,两者呈现较强的趋势性,同时模型的有效性和可靠性经后验差法检验表明预测精度较高,泛化能力较好。
Due to the shortage of current methods in groundwater level prediction,the rule of maximum similarity is proposed to describe the relevance between samples on the basis of theory of similarity forecast.Maximum connection degree is used to measure the similarities among historical samples of groundwater level quantitatively with time series consistency analysis.Steps of modeling and solving a five-element connection degree model for groundwater level prediction is applied in monthly and inter-annual depth forecast at 18#observation well in Zhongmu County.The results indicate that goodness of fit and trend between predictive value and measured value is optimal.Besides,the model is proved to be high prediction accuracy and better generalization with posterior-variance-test.
作者
杨淇翔
张琼楠
YANG Qi-xiang;ZHANG Qiong-nan(Henan Water and Power Engineering Consulting Co. Ltd., Zhengzhou 450016, China;Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450045, China)
出处
《中国农村水利水电》
北大核心
2020年第3期62-65,73,共5页
China Rural Water and Hydropower
基金
河南省水利厅2018年度水利科技攻关计划项目(GG201825)
水资源高效利用与保障工程河南省协同创新中心开放课题资助项目(2013CICWPHN)。
关键词
时间序列模型
最大相似度
集对分析
地下水动态
后验差检验
time series model
maximal similarity
set pair analysis
groundwater dynamic
posterior-variance-test