期刊文献+

基于无线射频识别的手术器械自适应分类仿真

Adaptive Classification and Simulation of Surgical Instruments Based on Radio Frequency Identification
下载PDF
导出
摘要 针对当前无线射频识别的手术器械自适应分类时,普遍存在着分类时间过长、能量消耗过大等问题。提出基于线性组合模型的手术器械自适应分类方法。通过对无线射频识别的手术器械自适应分类进行分析,引用高斯滤波对读写器读取到的手术器械设备标签信号强度进行预处理,减少周围环境因素对信号的干扰,使手术器械设备标签信号强度值与标签实际位置相符,引用粒子群算法找出最优标签信号强度值。将监督预学习和监督微调相结合,构建支持向量机线性组合模型,将手术器械标签的信号强度值输入到支持向量机中,获取手术器械设备标签信号的后验概率,根据后验概率进行手术器械自适应分类。实验结果表明,所提方法分类时间较短、能量消耗较小。 In the current adaptive classification for surgical instrument based on radio frequency identification, classification time is too long and energy consumption is too high. Therefore, an adaptive classification method for surgical instruments based on linear combination model was proposed. By analyzing the adaptive classification of surgical instruments based on radio frequency identification, we used Gaussian filter to preprocess the signal intensity of surgical instrument equipment tag read by the reader, so as to reduce the interference of environmental factors on the signal, so that the signal strength value of surgical instrument equipment label was consistent with the actual position of tag. Moreover, we used the particle swarm algorithm to find the strength value of best tag signal. We combined the supervised pre-learning with the supervised fine tuning to construct the linear combination model of support vector machine. Then, we inputted signal intensity value of surgical instrument label into the support vector machine to obtain the posterior probability of surgical instrument label signal. According to the posterior probability, we performed the adaptive classification of surgical instruments. Simulation results prove that the proposed method has shorter classification time and less energy consumption.
作者 刘秉政 牛智毅 LIU Bing-zheng;NIU Zhi-yi(Inner Mongolia Medical University,College of Computer and Information,Inner Mongolia Hohehot 010010,China;Inner Mongolia University of Technology,College of Information Engineering,Inner Mongolia,Hohehot 010010,China)
出处 《计算机仿真》 北大核心 2020年第5期367-370,共4页 Computer Simulation
基金 内蒙古自治区自然科学基金项目(2017BS0602)。
关键词 无线射频识别 手术器械 自适应分类 Radio frequency identification Surgical instrument Adaptive classification
  • 相关文献

参考文献9

二级参考文献92

  • 1余松森,詹宜巨,王志平,唐忠平.跳跃式动态树形反碰撞算法及其分析[J].计算机工程,2005,31(9):19-20. 被引量:52
  • 2田鹏,杨松林,王成龙.基于小波消噪的时序分析改进法在GPS变形监测中的应用[J].测绘科学,2005,30(6):55-56. 被引量:12
  • 3崔光照,曹祥红,王延峰,张勋才.生物信息学中的数字信号处理方法研究[J].科学技术与工程,2005,5(20):1494-1497. 被引量:5
  • 4李跃华,张兰凤.抑郁症研究现状及未来研究目标探讨[J].中国中医药信息杂志,2006,13(10):1-3. 被引量:16
  • 5FINKENZELLER K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communications[M]. Hoboken: John Wiley & Sons, 2010: 1-22.
  • 6KLAIR D K, CHIN K W, and RAAD R. A survey and tutorial of RFID anti-collision protocols[J]. IEEE Communicaitons Surveys & Tutorial, 2010, 12(3): 400-421.
  • 7WU Haifeng, ZENG Yu, FENG Jihua, et al. Binary tree slotted aloha for passive RFID tag anti-collision[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(1): 19-31.
  • 8ZHANG Lijuan, XIANG Wei, and TANG Xiao-hu. An adaptive anti-collision protocol for large-scale RFID tag identification[J]. IEEE Wireless Communications Letters, 2014, 3(6): 601-604.
  • 9SHAO Min, JIN Xiao-fang, and JIN Li-bao. An improved dynamic adaptive multi-tree search anti-collision algorithm based on RFID[C]. International Conference on Data Science and Advanced Analytics (DSAA), Shanghai, 2014: 72-75.
  • 10LAI Yuancheng and HSIAO Ling-yen. General binary tree protocol for coping with the capture effect in RFID tag identification[J]. IEEE Communications Letters, 2010, 14(3): 208-210.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部