期刊文献+

中部地区农村居民购买商业养老保险的影响因素研究 被引量:5

Study on the influencing factors of rural residents' purchase of commercial endowment insurance in central China
下载PDF
导出
摘要 针对中部地区农村居民选择商业养老保险的影响因素进行研究,从CFPS数据库中选择农村居民受访者子女数目,是否持有金融商品,是否选择商业养老保险等10个指标,划分为个人情况、经济情况、家庭情况及行为特征四大类。其次,利用二元Logistic回归模型的相关理论并通过SPSS求解得出工作性质、学历、人均家庭纯收入和是否持有金融产品4个变量对农村居民购买商业养老保险意愿影响显著。然后,将原始数据划分为训练集和测试集,通过Python构建决策树和随机森林模型预测居民是否购买商业养老保险,模型预测准确率可分别达到71%和77.9%。 In the study of rural population in the region choosing the influence factors of commercial endowment insurance,we choose the number of rural residents respondents children from CFPS database,whether financial holding products,whether to choose 10 indexes such as commercial endowment insurance,is divided into individual situation,economic situation,family status and behavior characteristics of 4 major categories,and eliminating the invalid samples.Secondly,using the relevant theories of binary Logistic regression model and solving by SPSS,four variables,namely,job nature,educational background,per capita household net income and whether or not to hold financial products,have a significant impact on rural residents'willingness to buy commercial endowment insurance.Then,the original data was divided into training set and test set,and the Decision Tree and Random Forest model were constructed by Python to predict whether residents buy commercial pension insurance.The prediction accuracy of the model was up to 71%and 77.9%.
作者 孙成伟 朱家明 夏胜群 李秦 SUN Cheng-wei;ZHU Jia-ming;XIA Sheng-qun;LI Qin(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Anhui Bengbu 233030,China;School of Finance,Anhui University of Finance and Economics,Anhui Bengbu 233030,China)
出处 《齐齐哈尔大学学报(自然科学版)》 2020年第3期84-88,共5页 Journal of Qiqihar University(Natural Science Edition)
基金 国家自然科学基金“自然资源资产与经济增长、经济安全的协调机制与策略研究”(71934001) 国家级创新训练项目(201910378306)。
关键词 农村商业养老保险 二元LOGISTIC回归 决策树 随机森林 PYTHON rural commercial endowment insurance binary logistic regression decision tree random forests Python
  • 相关文献

参考文献7

二级参考文献58

共引文献50

同被引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部