摘要
传统的污染物排放控制方法控制效果较差,导致控制后的污染物排放量也较多,因此,本文从对喷氨量优化控制的角度出发,首先采用相关度评价方法评价脱硝系统各个工况参数之间的关联性,然后通过比较脱硝后烟气的浓度含量和原始烟气中氮氧化物的浓度含量,计算脱硝效率。确定污染物排放影响参数,并设置脱硝系统报警值,在此基础上,引入RBF神经网络建立脱硝系统模型以及混沌离子群算法,进行轧制优化,提高脱硝率,降低氨气逃逸率。以便将喷氨量控制在合理范围内,减少火电厂污染物的排放,以此完成固体废弃物燃烧污染物排放的控制。经实验结果对比,此设计的固体废弃物燃烧污染物排放控制方法,比传统的控制方法控制后的污染物排放量少,具有一定的实际应用价值。
Traditional control method of the pollutants discharge control effect is poorer,lead to control emissions also more,therefore,this article from the perspective of optimal control on the ammonia injection quantity,first using relevance evaluation method and evaluation of denitration system correlation between various operating conditions,and then by comparing the denitration after the concentration of the flue gas content and the original,the concentration of the concentration of nitrogen oxide in flue gas denitration efficiency calculation.Influence parameters of pollutant discharge were determined and alarm value of denitrification system was set.On this basis,RBF neural network was introduced to establish denitrification system model and chaotic ion group algorithm,and rolling optimization was carried out to improve denitrification rate and reduce ammonia escape rate.In order to control the amount of ammonia within a reasonable range,reduce the emission of pollutants from thermal power plants,so as to complete the control of the emission of pollutants from solid waste combustion.Compared with the traditional control method,the proposed control method of solid waste combustion pollutant discharge is less than the traditional control method,which has certain practical application value.
作者
张媛媛
张喆
ZHANG Yuan-yuan;ZHANG Zhe(School of Power and Mechanical Engineering/North China Electric Power University,Beijing 102206,China;National Engineering Laboratory for Biomass Power Generation Equipment/North China Electric Power University,Beijing 102206,China;State Grid Smart Grid Research Institute,Beijing 102209,China)
出处
《山东农业大学学报(自然科学版)》
北大核心
2020年第3期475-478,共4页
Journal of Shandong Agricultural University:Natural Science Edition
基金
中央大学基础研究基金(2017MS026)。
关键词
固体废弃物
燃烧污染
控制方法
Solid wastes
combustion pollutant
controlling method