期刊文献+

基于谱方法求解器的非均匀电介质下电势分布特性的研究

Investigation on the Distribution Characteristics of the Electric Potential in Inhomogeneous Dielectric Using the Spectral-Method-Based Poisson Equation Solver
下载PDF
导出
摘要 以往研究中求静电场电势时,主要是求解均匀电介质的泊松方程,缺少对介电系数非均匀效应的分析.本文针对非均匀电介质的修正泊松方程进行求解,并研究非均匀介电系数对电势分布的影响.首先采用高效准确的谱方法求解器对极坐标系下的泊松方程进行求解,在较少的网格点下数值解能与理论解吻合良好.随后,对均匀介质泊松方程求解非均匀介质的电势分布所引入的误差进行研究,发现介电系数存在径向和周向梯度时均会产生误差,且周向梯度影响更明显,同时会破坏精确解原始的分布特性.最后,准确求解了非均匀电介质的电势分布,发现周向梯度对电势分布的影响更为显著,并发现电势分布在介电系数梯度趋于无穷时的渐进解. Previous studies mainly solved the Poisson equation for homogeneous dielectric when solving the electrostatic potential field and lack the analysis on the inhomogeneous effect of the dielectric coefficient.In this paper,we turn to solve the modified Poisson equation for inhomogeneous dielectric and investigate the effect of the inhomogeneous dielectric coefficient on the electric potential field.First,we develop an efficient and accurate spectral-method-based solver for the Poisson equation in the system of polar coordinates,and get excellent agreement between numerical and analytic solutions with small grid number points.Next,we focus on the error brought by solving the electric potential field with inhomogeneous dielectric when using the homogeneous-dielectric-based Poisson equation.We find that this error exists with the gradient of the dielectric coefficient in either radial or circumferential direction.Furthermore,this error is more contributed by the circumferential gradient than the radial gradient of the dielectric coefficient,which would break the distribution characteristics of the original accurate solution meanwhile.Finally,we accurately solve the electric potential field with inhomogeneous dielectric,find that the circumferential gradient is more significant than the radial gradient and obtain the asymptotic solution with the gradient of the dielectric coefficient approaching infinity.
作者 孙毅祥 SUN Yixiang(Beijing Long March Tian Min Hi-tech Company Limited,Beijing 100176,China;The Fifteenth Research Institute of China Academy of Launch Vehicle Technology,Beijing 100076,China)
出处 《湖南理工学院学报(自然科学版)》 CAS 2020年第2期12-16,26,共6页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 青年科学基金项目“高频平面变压器寄生参数解析建模研究”(51507006)。
关键词 静电场 电势 非均匀电介质 泊松方程 极坐标系 谱方法 electrostatic field electric potential inhomogeneous dielectric Poisson equation system of polar coordinates spectral method
  • 相关文献

参考文献4

二级参考文献30

  • 1廖仁炘,徐志和.用高斯定理求解电力线方程[J].大学物理,1993,12(7):14-15. 被引量:8
  • 2杜正平.电子对抗系统效能分析[J].电子对抗技术,2005,20(5):46-48. 被引量:17
  • 3聂德明,林建中,王瑞金.电渗流场的数值模拟[A].第8届全国环境与工业流体力学会议论文集[C].四川绵阳,2003,90-94.
  • 4BRIDSALL C K,LANGDON A B.Plasma physics via computer simulation[M].McGraw-Hill,NewYork,1985.
  • 5ROTH J R.Industrial plasma engineering[ M].Inst.of Phys.,Lodon,1995.
  • 6HUANG W,SLOAN D M.Pole condition for singular problems[J].Journal of Computational Physics,1993,107:254-261.
  • 7CHEN H,SU U S,SHIZGAL D.A direct spectral collocation Poisson solver in polar and cylindrical coordinates[J].Journal of Computational Physics,2000,160:453-463.
  • 8Chen H, Su Y, Shizgal B D. A direct spectral collocation Poisson solver in polar and cylindrical coordinates [ J ]. Journal of Comput Phys, 2000,160:453 - 469.
  • 9Shen J. Efficient spectral-Galerkin methods Ⅲ : polar and cylindrical geometries[J ]. SIAM J Sci Comput, 1997, 18:1583 - 1604.
  • 10Zhao S, Yedlin M J. A new iterative Chebyshev spectral method for solving the elliptic equation △ ( σ △ u ) = f [ J ]. Journal of Comput Phys, 1994,113:215- 223.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部