期刊文献+

基于BIM技术的铁路变配电所线缆敷设优化 被引量:4

BIM technology based cable laying optimization of railway substation
下载PDF
导出
摘要 为解决传统方法在铁路变配电所敷设施工时完全依靠二维设计布线图纸,易发生扭绞、交叉以及浪费物料等问题,基于建筑信息模型(BIM,Building Information Modeling)技术对铁路变配电所的线缆敷设进行优化。利用改进的快速扩展随机树(RRT*,Rapidly Exploring Random Tree*)算法,在三维视图下进行智能布线,解决了线缆布放规划复杂,工艺要求高,施工工艺难以掌握等问题,避免了施工过程中扭绞等问题的发生,同时实现了布线路径最优化。此外,还可以三维动画的形式对整个线缆敷设过程进行模拟和演示,并生成包含路由、长度、规格型号的线缆清单,显著提高了施工效率和工艺质量。 The traditional method completely relies on two-dimensional design wiring drawings in the laying construction of railway substation.In order to solve the problems such as twisting,crossing and waste of materials,which are easy to occur when the traditional method is used in the laying construction of railway substation and distribution,the cable laying of railway substation and distribution was optimized based on BIM(Building Information Modeling)technology.Using the improved rapid exploring random tree(RRT*,Rapid Exploring Random Tree*)algorithm,the intelligent wiring was carried out in three-dimensional view,which solved the problems of complex cable layout planning,high process requirements,difficult to master the construction process,avoided the occurrence of twisting in the construction process,and implemented the optimization of wiring path.In addition,the whole cable laying process could be simulated and demonstrated in the form of three-dimensional animation,and a cable list including route,length,specification and model could be generated,which significantly improved the construction efficiency and process quality.
作者 朱超平 刘珍珍 郑云水 ZHU Chaoping;LIU Zhenzhen;ZHENG Yunshui(Signal&Communication Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;College of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《铁路计算机应用》 2020年第7期40-44,共5页 Railway Computer Application
基金 中国铁道科学研究院科研项目(2017YJ007)。
关键词 建筑信息模型(BIM) 铁路变配电所 智能布线 RRT~*算法 Building Information Modeling(BIM) railway substation smart wiring Rapid Exploring Random Tree*(RRT*)algorithm
  • 相关文献

参考文献4

二级参考文献35

共引文献37

同被引文献38

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部