摘要
针对临近空间高超声速目标拦截弹交接班区域较高时的作战情景,参考轨道拦截理论,以高抛再入型拦截弹道为基准,将拦截弹运动视作二体运动,设计了远程拦截制导算法。首先,将复杂的运动模型进行简化,再根据受力分析将模型转换为二体轨道模型。然后,利用航迹角迭代法求解了Lambert问题,得到变轨需用速度,在轨道模型中提出通过调整速度至变轨需用速度完成拦截任务。最后,分析了拦截弹机动时推力有限带来的过渡段机动问题,提出采用速度增益制导法解决此问题。仿真结果表明,在高空域气动力微弱条件下,将拦截弹运动模型视作二体轨道模型是可行的,速度增益制导算法不仅能有效解决过渡段机动问题,而且针对预测拦截点变化的情况也具有良好的收敛性,能够完成临近空间的中制导拦截任务。
Aiming at the combat situation when the handover area of hypersonic target interceptor is high in the near space,referencing to the theory of orbit interception,based on the high throw and reentry interceptor trajectory and take interceptor as two body model,a long-range interceptor guidance algorithm is designed.Firstly,the complex motion model is simplified,and according to the force analysis,the model is transformed into a two body orbit model.Then,by using the track angle iteration method,the Lambert problem is solved,and the orbit change required speed is obtained.It is proposed to adjust the speed to the required speed of the orbit change to complete the intercepting task in the orbit model.Finally,because of the limited thrust,the maneuverability of the interceptor in transition period is analyzed,and the method of velocity gain guidance is proposed to solve the problem.The simulation results show that it is feasible to use the two body orbit model to represent the motion model of the interceptor under the condition of weak aerodynamic force in the high altitude domain.The speed gain guidance algorithm can not only solve the transition period maneuver problem effectively,but also has good convergence in predicting the change of interceptor points,so as to complete the medium guidance interception task in the near space.
作者
陈文钰
邵雷
雷虎民
骆长鑫
张涛
CHEN Wenyu;SHAO Lei;LEI Humin;LUO Changxin;ZHANG Tao(Air and Missile Defence College,Air Force Engineering University,Xi’an 710051,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2020年第8期1804-1811,共8页
Systems Engineering and Electronics
基金
国家自然科学基金(61703421,61773398,61873278)资助课题。
关键词
临近空间
中制导
速度增益制导
弹道修正
二体理论
near space
midcourse guidance
velocity gain guidance
trajectory correction
two body theory