期刊文献+

基于核稀疏编码的阵发性房颤检测 被引量:1

Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding
下载PDF
导出
摘要 阵发性房颤(PAF)是一种具有偶发性的心律失常,其较高的漏检率导致心脏相关疾病的增加。该文提出了一种基于核稀疏编码的自动检测方法,可以仅根据较短RR间期数据识别PAF发作。该方法采用特殊几何结构来分析数据高维特性,通过计算协方差矩阵作为特征描述子,找到蕴含在数据中的黎曼流形结构;然后基于Log-Euclid框架,利用核方法将流形空间映射到高维可再生核希尔伯特空间,以获取更准确的稀疏表示来快速识别PAF。经麻省理工学院-贝斯以色列医院房颤数据库验证,获得98.71%的敏感性、98.43%的特异度和98.57%的总准确率。因此,该研究对检测短暂发作的PAF有实质性的改善,在临床监测和治疗方面显示出良好的潜力。 Paroxysmal Atrial Fibrillation(PAF) is a kind of accidental arrhythmia, and its high missed detection rate leads to the increase of heart-related diseases. An automatic detection method is proposed based on kernel sparse coding, which can identify PAF attacks based only on short RR interval data. A special geometric structure is presented to analyze the high-dimensional characteristics of the data, and the covariance matrix is calculated as a feature descriptor to find the Riemannian manifold structure contained in the data;Based on the Log-Euclidean framework, a manifold method is used to map the manifold space to a highdimensional renewable kernel Hilbert space to obtain a more accurate sparse representation to identify quickly PAF. After verification by the Massa-chusetts Institute of Technology-Beth Israel Hospital atrial fibrillation database, the sensitivity is 98.71%, the specificity is 98.43%, and the total accuracy rate is 98.57%. Therefore,this study has a substantial improvement in the detection of transient PAF and shows good potential for clinical monitoring and treatment.
作者 刘明 孟宪辉 熊鹏 刘秀玲 LIU Ming;MENG Xianhui;XIONG Peng;LIU Xiuling(College of Electronic and Information Engineering,Hebei University,Baoding 071002,China;Key Laboratory of Digital Medical Engineering of Hebei Province,Baoding 071002,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1743-1749,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61673158) 河北省自然科学基金(F2018201070) 河北省研究生创新资助项目(CXZZSS2019006) 河北省青年拔尖人才项目(BJ2019044)。
关键词 阵发性房颤 协方差描述子 黎曼流形 核稀疏编码 Paroxysmal Atrial Fibrillation(PAF) Covariance descriptor Riemann manifold Kernel sparse coding
  • 引文网络
  • 相关文献

参考文献1

二级参考文献8

  • 1Gritzali F,Frangakis G,and Papakonstantinou G.Detection of the P and T waves in an ECG.Computers and Biomedical Research,1989,22(1):83-91.
  • 2Thakor N V and Zhu Y S.Applications of adaptive filtering to ECG analysis:Noise cancellation and arrhythmia detection.IEEE Trans.on Biomed Eng.,1991,38(8):785-794.
  • 3Zhu Y S and Thakor N V.P-wave detection by an adaptive QRS-T cancellation technique.Proc IEEE/EMBS 9th Conf,Boston,1987:249-252.
  • 4Senhadji L,Wang F,Hernandez A I,and Carrault G.Wavelets extrema representation for QRS-T cancellation and P wave detection.IEEE Computers in Cardiology,2002,22-25(9):37-40.
  • 5Li C,Zheng C,and Tai C.Detection of ECG characteristic points using wavelet transforms.IEEE Trans.on Biomed Eng.,1995,42(1):21-28.
  • 6Sahambi J S,Tandon S N,and Bhatt R K.Using wavelet transforms for ECG characterization:An on-line digital signal processing system.IEEE Engineering in Medicine and Biology Magzine,1997,16 (1):77-83.
  • 7谢国明,聂志伟,向华,曾照芳.用小波变换结合神经网络检测ECG信号的P波[J].生物医学工程学杂志,1999,16(3):320-323. 被引量:11
  • 8夏恒超,詹永麒,陈旭华.基于小波变换和波形信息的P波检测方法[J].北京生物医学工程,2003,22(1):27-29. 被引量:7

共引文献10

同被引文献4

引证文献1

二级引证文献2

;
使用帮助 返回顶部