期刊文献+

基于翻译模型的异质重边信息网络链路预测研究

Research of link prediction based on translation model in heterogeneous multi⁃edge information network
下载PDF
导出
摘要 在异质信息网络中,异质节点对象之间具有多元关系,形成异质重边信息网络.知识图谱表示旨在将实体和关系在低维的向量空间进行嵌入,可以用来学习异质重边信息网络中实体间的多元关系.首先通过注意力机制对异质重边信息网络中的多元关系进行融合表示,进而将异质节点的类型信息进行多元关系融合空间的映射,在多元关系融合空间上提出基于翻译的异质重边嵌入模型,用以学习异质节点之间的链路关系.最后,在MovieLens100k电影数据集上进行了异质节点多元关系的链路预测实验.实验结果表明,在异质重边信息网络中,基于改进的翻译模型在实体间链路预测性能方面要优于传统的知识表示方法,可以有效地提升链路预测的精度. In heterogeneous information network,heterogeneous nodes have multiple relations which can form heterogeneous multi‐edge information network.Knowledge graph‐based representation aims to embed object entities and relations into a lowdimensional vector space which can be used to learn the multiple relations between entities in heterogeneous multi‐edge information network.In this paper,we first leverage fused representation of multiple relations for heterogeneous multi‐edge information network in terms of attention mechanism.Then,projected matrices are adopted to map the types of heterogeneous nodes into fused spaces of multiple relations.More,in the fusion representation space of multiple relations,translation‐based heterogeneous multi‐edge embedding model is proposed to learn the link relations among heterogeneous nodes.Finally,link prediction experiments of heterogeneous multi‐edge relations are carried out on MovieLens100k dataset.The experimental results demonstrate that the novel translation model is superior to traditional knowledge representation methods at the aspect of link prediction performance,which can effectively improve the accuracy of link prediction.
作者 郑建兴 李沁文 王素格 李德玉 Zheng Jianxing;Li Qinwen;Wang Suge;Li Deyu(School of Computer and Information Technology,Shanxi University,Taiyuan,030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education(Shanxi University),Taiyuan,030006,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期541-548,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61632011,61603229,61672331,61573231,61906112) 山西省重点研发计划(国际科技合作)(201803D421024,201903D421041) 山西省自然科学基金(201901D211174,201901D111032) 山西省高等学校科技创新项目(2020L0001,2019L0008) 山西省软科学研究一般项目(2018041015‐3)。
关键词 异质重边信息网路 链路预测 翻译模型 表示学习 heterogeneous multi‐edge information network link prediction translation model representation learning
  • 相关文献

参考文献3

二级参考文献18

  • 1Xiaoyuan Su,Taghi M. Khoshgoftaar,Jun Hong.A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence . 2009
  • 2Sonny H S C,Jiawei H,Wang K.RecTree:An Efficient Collaborative Filtering Method. Data Warehousing and Knowledge Discovery . 2001
  • 3Koren Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model. Proceedings of the 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining . 2008
  • 4Paterek A.Improving regularized singular value decomposition for collaborative filtering. Statistics A Journal in Theoretical and Applied Statistics . 2007
  • 5Jian-Tao Sun,Hua-Jun Zeng,Huan Liu,et al.a novel approach to personalized Web search. Proceedings of the 14th international conference on World Wide Web . 2005
  • 6Robert M. Bell,Yehuda Koren.??Lessons from the Netflix prize challenge(J)ACM SIGKDD Explorations Newsletter . 2007 (2)
  • 7Steffen Rendle.??Factorization Machines with libFM(J)ACM Transactions on Intelligent Systems and Technology (TIST) . 2012 (3)
  • 8Slobodan Vucetic,Zoran Obradovic.??Collaborative Filtering Using a Regression-Based Approach(J)Knowledge and Information Systems . 2005 (1)
  • 9M. O’Conner,J. Herlocker.Clustering Items for Collaborative Filtering. Proceedings of the ACM SIGIR Workshop on Recommender Systems . 1999
  • 10Ungar L.H,Foster D.P.Clustering methods for collaborative filtering. Workshop on Recommendation Systems at the Fifteenth National Conference on Artificial Intelligence . 1998

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部