摘要
针对温室温度控制系统所存在的大惯性、非线性等问题,提出神经网络PID控制算法,并利用知识局部存储且具有较快学习速度的B样条函数作为网络隐层神经元函数,同时,提出了β参数型-B样条曲线的重新参数化方法,通过学习算法对β参数搜索来动态调节B样条基函数,从而建立B-BP神经网络,并利用其对PID控制器的比例、积分和微分参数进行优化调整,从而为B-BP-PID控制器的参数自适应调整提供更好的保证,使温度控制系统有效跟踪系统模型并达到较高的辨识精度。仿真试验获得B-BP-PID控制器的最佳β因子为3.2,其温度控制超调量为27%,调节时间为0.8 s,而BP-PID控制器的超调量为25%,调节时间为4.8 s,RBF-PID控制器的超调量为40%,调节时间为1.2 s,新算法有效提高了温度控制过程的稳定性、精确性与鲁棒性。
In view of the problems of nonlinear and great inertia existing in the temperature control system of greenhouse,propose the neural network PID control algorithm,and the B spline function is used as the neural function of the network hidden layer,which is stored locally and with fast learning speed,at the same time,the re-parameterization method ofβparameterized B-spline curve is proposed,which realize dynamic adjustment of B spline basis function by learning algorithm,thus establish the B-BP which is used to optimize and adjust the proportion,integral and differential parameters of the PID controller,so as to provide a better guarantee for the parameter adaptive adjustment of B-BP-PID controller which make the temperature control system effectively tracking system model and achieve the high accuracy.The best factorβof B-BP-PID controller is 3.2 which obtained by the simulation experiment,its overshoot is 27%,the regulating time is 0.8 s,and the overshoot of BP-PID controller is 25%,its regulating time is 4.8 s,the overshoot of RBF-PID controller is 40%,its regulating time is 1.2 s.So the new algorithm effectively improves the stability,accuracy,robustness in the process of temperature controlling.
作者
皇甫立群
Huangfu Liqun(Faculty of Applied Technology,Huaiyin Institute of Technology,Huaian,223003,China)
出处
《中国农机化学报》
北大核心
2020年第7期68-74,共7页
Journal of Chinese Agricultural Mechanization
基金
江苏省建设系统科技项目(2019ZD001095)
江苏省教育厅自然基金项目(13KJD510002)。
关键词
温室
温度控制
PID
BP神经网络
参数整定
B样条函数
greenhouse
temperature control
PID
BP neural networks
parameters tuning
B-spline function