期刊文献+

制冷工况相变能源桩热交换规律 被引量:8

Heat exchange behavior of the phase change energy pile under cooling condition
原文传递
导出
摘要 相变材料是一种通过改变材料物态来吸收或放出潜热的物质。将其用于能源地下结构中可以增加结构体的能量密度、提高换热量,从而减小热交换所需的地下空间资源。该文搭建了缩尺模型实验系统,其中模型圆桩为相变储能混凝土能源桩,桩直径0.2 m,桩长1.5 m,将桩埋入装有饱和砂土的尺寸为2.45 m×2.45 m×2 m的模型箱中。实验中控制换热流体温度恒定为5.5℃,分别进行了0.15、 0.30和0.45 m^3/h 3组不同流量的制冷工况,每种工况包括"制冷-回温"3次循环。研究了饱和砂土中相变能源桩的温度热响应和换热量,分析了桩与周围土体的温度随时间变化规律;比较了换热流体流量对能源桩换热量的影响。研究结果表明:制冷工况下,相变能源桩在饱和砂土中的热传递主要沿径向,在热交换过程中对于桩周土体的温度影响范围约为2倍桩径。换热流体流量增大,进出口温差减小,而热量增大。 Phase change materials which absorb large amounts of heat can be used as backfill material around heat transfer piles to improve the heat transfer efficiency and reduce the underground space required by the heat transfer piles. This paper describes a scale model test of a 0.2 m diameter and 1.5 m long concrete phase-change energy storage pile. The pile was buried in saturated sand in a 2.45 m × 2.45 m× 2 m box. The heat transfer fluid temperature was kept constant by a temperature controller. The three tests used flow rates of 0.15, 0.30 and 0.45 m^3/h. Each case included three cooling-heating cycles. The tests measured the thermal response and the heat transfer rates to the phase change energy pile including the pile-soil temperature differences for various flow rates and the influence of the flow rate and the flow temperatures on the heat transfer capacity of the phase change concrete pile. The results are compared with the heat transfer capacity of an ordinary concrete pile. Cooling test results show that the heat transfer to the phase change energy pile in the saturated sand is mainly in the radial direction with the sand temperature influenced over an area about twice the pile diameter as the heat transfer approached steady state. The temperature difference between the system inlet and outlet decreased as the heat transfer capacity of the phase change pile increased with increasing flow rate.
作者 崔宏志 邹金平 包小华 亓学栋 齐贺 CUI Hongzhi;ZOU Jinping;BAO Xiaohua;QI Xuedong;QI He(Underground Polis Academy,College of Civil and Transportation Engineering,Shenzhen University,Shenzhen 518060,China;China Construction Science and Technology Group Co.,Ltd.,Shenzhen 518000,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期715-725,共11页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(51678367)。
关键词 相变材料 能源桩 制冷实验 温度热响应 换热性能 phase change material energy pile cooling tests temperature thermal response heat transfer capacity
  • 相关文献

参考文献4

二级参考文献31

  • 1BRAND L H. Energy foundations and other thermo-active ground structures[J]. Gotechnique, 2006, 56(2): 81-122.
  • 2PASTEN C, SANTAMARINA J C. Thermally induced long-term displacement of thermoactive piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140, 06014003-1-5.
  • 3YASUHIRO H, HISASHI S, MAKOTO N, et al. Field performance of an energy pile system for space heating [J]. Energy and Buildings, 2007, 39: 517-524.
  • 4孔纲强,彭怀风,吴宏伟,等.一种地源热泵灌注桩钢筋笼内埋管的旋工方法:中国,201310302155.6[P],2013.
  • 5孔纲强,黄旭,丁选明,等.一种六边形预制能量桩及其制作方法:中国,201310442139.7[P],2013.
  • 6刘汉龙,丁选明,吴宏伟,等.一种PCC能量桩及其制作方法:中国,201210298385.5[P],2012.
  • 7Brandl H.Energy foundations and other thermo-active ground structures[J].Géotechnique,2006,56(2):81-122.
  • 8Gao J,Zhang X,Liu J,et al.Numerical and experimental assessment of thermal performance of vertical energy piles:An application[J].Applied Energy,2008,85(10):901-910.
  • 9National House-Building Council(NHBC).Efficient Design of Piled Foundations for Low Rise Housing:Design Guide[M].Watford,UK:IHS BRE Press,2010.
  • 10Ground Source Heat Pump Association(GSHPA).Thermal Pile Design,Installation&Materials Standards[M].Milton Keynes,UK:National Energy Centre,2013.

共引文献46

同被引文献71

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部