期刊文献+

一种基于区域划分的改进ORB算法 被引量:18

An improved ORB algorithm based on region division
下载PDF
导出
摘要 针对传统ORB算法所提取的特征点分布不均匀、存在冗杂,且不具有尺度不变性的问题,提出了一种基于区域划分的改进ORB算法。算法根据需要提取的特征点总数和所划分的区域个数计算每个小区域需要提取的特征点个数,解决了在特征点提取过程中特征点重叠和特征点冗余的问题;通过构建图像金字塔,在每一层图像金字塔上提取特征点,解决了ORB算法提取的特征点不具有尺度不变性的问题。实验结果表明:在不损失图像匹配精度的同时,所提算法提取的特征点更加均匀合理,在提取速度上也较传统ORB算法提升了16%左右。 The feature points extracted by the traditional ORB algorithm are not evenly distributed,are redundant and have no scale invariance.To solve this problem,this paper proposes an improved ORB algorithm based on region division.According to the total number of feature points to be extracted and the number of regions to be divided,the algorithm calculates the number of feature points to be extracted for each region,which solves the problem of feature point overlap and redundancy in the feature point extraction process.By constructing the image pyramid and extracting feature points on each layer,the problem that the feature points extracted by ORB algorithm do not have scale invariance is solved.The experimental results show that the feature points extracted by our algorithm are more uniform and reasonable without losing the accuracy of image matching,and the extraction speed is about 16%faster than that of the traditional ORB algorithm.
作者 孙浩 王朋 SUN Hao;WANG Peng(School of Information Science and Electrical Engineering,Shandong Jiao Tong University,Jinan 250357,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第9期1763-1769,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61502277) 山东省自然科学基金(ZR2015FL018)。
关键词 ORB算法 特征点提取 区域划分 图像金字塔 图像匹配 ORB algorithm feature point extraction region division image pyramid image matching
  • 相关文献

参考文献9

二级参考文献76

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 3于子翊,李晓娟.基于形状不变矩的储粮微生物识别[J].微计算机信息,2006(06S):251-253. 被引量:3
  • 4LoWE D G. Distinctive image features from scale-invarianl keypoints [J]. International Journal of Computer Vi- sio~z, 2004, 60(2): 91 110.
  • 5CAI.ONDER M, I.EPETIT V, STRECHA C, el al. BRIEF: Binary robust independent elememary features[C]. Proceedings of the European Conference on Computer Vision, Berlin Heidelberg: Springer, 2010: 778-792.
  • 6LEUTENEGGER S. CHLI M, SIEGWART R Y. BRISK: Binary robust invariant scalable keypoints[C]. Pro ceedings of the IEEE International Conference on Computer Vision, Washington.dC, USA: IEEE, 2011: 2548 2555.
  • 7TAKACS G, CHANI)RASEKHAR V, TSAI S, et al. Rotation invariant fast features for large-scale recognition and real-time tracking [J].Signal Processing: Image(7ommu~ication, 2013, 28(4): 334-344.
  • 8SAHANI S K, AI)HIKARI G, DAS B K. A fasl template matching algorithm for aerial object tracking[C]. 2011 International Conference on Image Information Processing, Himachal Pradesh: IEEE, 2011:1 6.
  • 9SUM S, WANG L, CHENG K Y.' Analysis on multiresolution mosaic images[J]. IEEE Transac- tions on Image Processing, 2004, 13(7):952-959.
  • 10LOWED G. Distinctive image features from scale- invariant keypoints [J]. International Journal oat. Computer Vision (S0920-5691), 2004, 60 (2).. 91-100.

共引文献121

同被引文献129

引证文献18

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部