摘要
针对传统ORB算法所提取的特征点分布不均匀、存在冗杂,且不具有尺度不变性的问题,提出了一种基于区域划分的改进ORB算法。算法根据需要提取的特征点总数和所划分的区域个数计算每个小区域需要提取的特征点个数,解决了在特征点提取过程中特征点重叠和特征点冗余的问题;通过构建图像金字塔,在每一层图像金字塔上提取特征点,解决了ORB算法提取的特征点不具有尺度不变性的问题。实验结果表明:在不损失图像匹配精度的同时,所提算法提取的特征点更加均匀合理,在提取速度上也较传统ORB算法提升了16%左右。
The feature points extracted by the traditional ORB algorithm are not evenly distributed,are redundant and have no scale invariance.To solve this problem,this paper proposes an improved ORB algorithm based on region division.According to the total number of feature points to be extracted and the number of regions to be divided,the algorithm calculates the number of feature points to be extracted for each region,which solves the problem of feature point overlap and redundancy in the feature point extraction process.By constructing the image pyramid and extracting feature points on each layer,the problem that the feature points extracted by ORB algorithm do not have scale invariance is solved.The experimental results show that the feature points extracted by our algorithm are more uniform and reasonable without losing the accuracy of image matching,and the extraction speed is about 16%faster than that of the traditional ORB algorithm.
作者
孙浩
王朋
SUN Hao;WANG Peng(School of Information Science and Electrical Engineering,Shandong Jiao Tong University,Jinan 250357,China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2020年第9期1763-1769,共7页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金(61502277)
山东省自然科学基金(ZR2015FL018)。
关键词
ORB算法
特征点提取
区域划分
图像金字塔
图像匹配
ORB algorithm
feature point extraction
region division
image pyramid
image matching