期刊文献+

基于密集连接卷积神经网络的入侵检测技术研究 被引量:22

Research on Intrusion Detection Technology Based on Densely Connected Convolutional Neural Networks
下载PDF
导出
摘要 卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。 Convolutional Neural Network(CNN)is widely used in the field of intrusion detection technology.It is generally believed that the deeper the network structure,the more accurate in feature extraction and detection accuracy.However,it is accompanied with the problems of gradient dispersion,insufficient generalization ability and low accuracy of parameters.In view of the above problems,the Densely Connected Convolutional Network(DCCNet)is applied into the intrusion detection technology,and achieve the purpose of improving the detection accuracy by using the hybrid loss function.Experiments are performed with the KDD 99 data set,and the experimental results are compared with the commonly used LeNet neural network and VggNet neural network structure.Finally,the analysis shows that the accuracy of detection is improved,and the problem of gradient vanishing during training is alleviated.
作者 缪祥华 单小撤 MIAO Xianghua;SHAN Xiaoche(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2706-2712,共7页 Journal of Electronics & Information Technology
关键词 入侵检测 卷积神经网络 密集连接 梯度弥散 Intrusion detection Convolutional Neural Network(CNN) Dense connection Gradient vanishing
  • 引文网络
  • 相关文献

参考文献6

二级参考文献30

  • 1郭山清,高丛,姚建,谢立.基于改进的随机森林算法的入侵检测模型(英文)[J].软件学报,2005,16(8):1490-1498. 被引量:18
  • 2雷英杰,王宝树,王毅.基于直觉模糊决策的战场态势评估方法[J].电子学报,2006,34(12):2175-2179. 被引量:55
  • 3雷英杰,王宝树,王毅.基于直觉模糊推理的威胁评估方法[J].电子与信息学报,2007,29(9):2077-2081. 被引量:71
  • 4Dimitris K and Elpiniki I. Intuitionistic fuzzy reasoning with cognitive maps[C]. Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, China, 2011: 821-827.
  • 5Chen Cheng-hung. Compensatory neural fuzzy networks with rule-based cooperative differential evolution for nonlinear system control[J]. Nonlinear Dynamics, 2014, 75(1): 355-366.
  • 6Lei Yang, Lei Ying-jie, and Kong Wei-wei. Technique for target recognition based on intuitionistic fuzzy reasoning[J]. IET Signal Processing, 2012, 6(3): 255-263.
  • 7Mitchell H B. Pattern recognition using type-II fuzzy sets[J]. Information Sciences, 2005, 170(2/4): 409-418.
  • 8Hong Peng, Jun Wang, Mario J P J, et al.. Fuzzy reasoning spiking neural P system for fault diagnosis[J]. Information Sciences, 2013, 235: 106-116.
  • 9Luigi L and Larbi B. Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization[J]. Knowledge Based System, 2007, 20(3): 266-276.
  • 10Hwang C M, Yang M S, Hung W L, et al.. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition[J]. Infor-mation Sciences, 2012, 189: 93-109.

共引文献125

同被引文献200

引证文献22

二级引证文献65

;
使用帮助 返回顶部