摘要
卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。
Convolutional Neural Network(CNN)is widely used in the field of intrusion detection technology.It is generally believed that the deeper the network structure,the more accurate in feature extraction and detection accuracy.However,it is accompanied with the problems of gradient dispersion,insufficient generalization ability and low accuracy of parameters.In view of the above problems,the Densely Connected Convolutional Network(DCCNet)is applied into the intrusion detection technology,and achieve the purpose of improving the detection accuracy by using the hybrid loss function.Experiments are performed with the KDD 99 data set,and the experimental results are compared with the commonly used LeNet neural network and VggNet neural network structure.Finally,the analysis shows that the accuracy of detection is improved,and the problem of gradient vanishing during training is alleviated.
作者
缪祥华
单小撤
MIAO Xianghua;SHAN Xiaoche(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2020年第11期2706-2712,共7页
Journal of Electronics & Information Technology
关键词
入侵检测
卷积神经网络
密集连接
梯度弥散
Intrusion detection
Convolutional Neural Network(CNN)
Dense connection
Gradient vanishing