期刊文献+

结合深度残差网络的SSD肺部结节检测方法 被引量:2

SSD Lung Nodule Detection Method Combined with Deep Residual Network
下载PDF
导出
摘要 为了弥补传统的SSD算法在小目标检测中的不足,提出一种结合深度残差网络的SSD目标检测算法,用于医学影像诊断中肺结节小目标的检测识别。具体操作中,首先对肺部CT图像的切片进行预处理操作得到肺实质,通过得到的大肺实质样本对提出的方法进行训练。实验结果表明,与传统的SSD算法相比,提出的方法模型检测的敏感度为84.25%,假阳性率为10.55%,分别比传统的SSD算法在敏感度上提高了6.9%,假阳性率降低了2.7%。 In order to make up for the shortcomings of traditional SSD algorithm in small target detection,this paper combines SSD target detection algorithm with deep residual network to form a new model for detecting lung nodules of small targets.First,pre-processing the slices of lung CT images to obtain the lung parenchyma,and then input a large number of lung parenchyma samples into the model for training.Finally,the sensitivity of the model test was 84.25%,and the false positive rate was 10.55%.Compared with the traditional SSD algorithm,the sensitivity is increased by 6.9%,and the false positive rate is reduced by 2.7%.
作者 汪洋 李建锋 WANG Yang;LI Jian-feng(College of Information Science and Engineering , Jishou University, Jishou Hunan 416000, China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2020年第6期96-100,117,共6页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金(61962023,61562029) 湘西土家族苗族自治州科研项目(2018sf5013)。
关键词 卷积神经网络 迁移学习 肺结节 残差网络 SSD算法 convolutional neural network transfer learning lung nodules residual network SSD algorithm
  • 相关文献

参考文献3

二级参考文献70

  • 1CHEN Hui,WANG Xiao-hua,MA Da-qing,MA Bin-rong.Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography[J].Chinese Medical Journal,2007(14):1211-1215. 被引量:13
  • 2LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 3HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 4LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 5HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 7GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 8LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 9SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 10SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.

共引文献591

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部