摘要
为了进一步提高相关滤波算法的判别力和对快速运动、遮挡等复杂场景的应对能力,该文提出一种基于自适应背景选择和多检测区域的跟踪框架。首先对检测后的响应图进行峰值分析,当响应为单峰的时候,提取目标上下左右的4块区域作为负样本对模型进行训练,当响应为多峰的时候,采用峰值提取技术和阈值选择方法提取较大几个峰值区域作为负样本。为了进一步提高算法对遮挡的应对能力,该文提出了一种多检测区域的搜索策略。将该框架和传统的相关滤波算法进行结合,实验结果表明,相对于基准算法,该算法在精度上提高了6.9%,在成功率上提高了6.3%。
In order to improve further the discrimination ability of the correlation filtering algorithm and the ability to deal with fast motion and occlusion,a tracking framework based on adaptive context selection and multiple detection areas is proposed.Firstly,the peak value of the detected response map is analyzed.When the response is single peak,four areas surrounding the target are extracted as negative samples to train the model.When the response is multi-peak,the peak value extraction technology and threshold selection are used to extract several larger peak areas as negative samples.In order to improve further the ability to deal with occlusion,a multi detection area search strategy is proposed.Combining the framework with the traditional correlation filter algorithm,the experimental results show that the proposed algorithm improves the accuracy by 6.9%and the success rate by 6.3%.
作者
蒲磊
冯新喜
侯志强
余旺盛
PU Lei;FENG Xinxi;HOU Zhiqiang;YU Wangsheng(Graduate College,Air Force Engineering University,Xi’an 710077,China;Institute of Information and Navigation,Air Force Engineering University,Xi’an 710077,China;School of Computer Science and Technology,Xian University of Posts and Telecommunications,Xi’an 710121,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2020年第12期3061-3067,共7页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61571458,61703423)。
关键词
视觉跟踪
相关滤波
遮挡
背景选择
Visual tracking
Correlation filter
Occlusion
Context selection