期刊文献+

Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array 被引量:2

原文传递
导出
摘要 Studies have shown that the use of pulsar timing arrays(PTAs)is among the approaches with the highest potential to detect very low-frequency gravitational waves in the near future.Although the capture of gravitational waves(GWs)by PTAs has not been reported yet,many related theoretical studies and some meaningful detection limits have been reported.In this study,we focused on the nanohertz GWs from individual supermassive binary black holes.Given specific pulsars(PSR J1909-3744,PSR J1713+0747,PSR J0437-4715),the corresponding GW-induced timing residuals in PTAs with Gaussian white noise can be simulated.Further,we report the classification of the simulated PTA data and parameter estimation for potential GW sources using machine learning based on neural networks.As a classifier,the convolutional neural network shows high accuracy when the combined signal to noise ratio≥1.33 for our simulated data.Further,we applied a recurrent neural network to estimate the chirp mass(M)of the source and luminosity distance(Dp)of the pulsars and Bayesian neural networks(BNNs)to obtain the uncertainties of chirp mass estimation.Knowledge of the uncertainties is crucial to astrophysical observation.In our case,the mean relative error of chirp mass estimation is less than 13.6%.Although these results are achieved for simulated PTA data,we believe that they will be important for realizing intelligent processing in PTA data analysis.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第12期92-101,共10页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11873001,11725313,and 11690024) the Natural Science Foundation of Chongqing(Grant No.cstc2018jcyj AX0767) the National Key Research and Development Program of China(Grant No.2017YFA0402600) the CAS International Partnership Program(Grant No.114A11KYSB20160008) the CAS Strategic Priority Research Program(Grant No.XDB23000000)。
  • 相关文献

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部