期刊文献+

基于并行神经网络的塑料光纤链路自动识别模型

Automatic Identification Model of Plastic Optical Fiber Link Based on Parallel Neural Network
原文传递
导出
摘要 为提升塑料光纤链路识别性能,设计了基于并行神经网络的塑料光纤链路自动识别模型,应用长短期记忆神经网络(LSTM)捕获塑料光纤链路信号的时空依赖特征,应用并行卷积神经网络捕获多样化、抽象、非线性的塑料光纤链路特征信息。经仿真,当批次样本量为30时,模型对10个塑料光纤通信系统的识别准确率分别为96%、95%、96%、95%、99%、96%、96%、97%、96%和95%,平均识别准确率为96.1%,平均识别时间为5.8 s,明显优于骨干光通信网链路识别方案和面向多层次异构信息平台的数据访问链路识别方案。研究成果可为当前塑料光纤链路识别工作提供一定的参考。 and nonlinear characteristics of plastic optical fiber link information.Through simulation,when the batch sample size was 30,the identification accuracy of the model for 10 plastic optical fiber communication systems was 96%,95%,96%,95%,99%,96%,96%,97%,96%and 95%respectively,the average identification accuracy was 96.1%,and the average identification time was 5.8 s,which was obviously superior to the backbone optical communication network link identification scheme and the data access link identification scheme for multi-level heterogeneous information platform.The research results can provide some reference for the current plastic optical fiber link identification.
作者 王晓勇 江颖洁 徐彬泰 周洁 田安琪 马良 WANG Xiao-yong;JIANG Ying-jie;XU Bin-tai;ZHOU Jie;TIAN An-qi;MA Liang(Information Telecommunications Company,State Grid Shandong Electric Power Company,Jinan 250001,China)
出处 《塑料科技》 CAS 北大核心 2020年第12期110-114,共5页 Plastics Science and Technology
关键词 塑料光纤 链路识别 长短期记忆网络 卷积神经网络 Plastic optical fiber Link identification Long short-term memory network Convolutional neural network
  • 相关文献

参考文献14

二级参考文献153

  • 1赵宏伟,陈霄,石景海,马凌蛟.综合颜色和形状特征的交通标志图像检索算法[J].吉林大学学报(工学版),2013,43(S1):128-132. 被引量:15
  • 2赵征,刘吉臻,田亮.基于数据融合的燃料量软测量及煤质发热量在线校正[J].热能动力工程,2007,22(1):42-45. 被引量:19
  • 3Bertino E, Kamra A, Terzi E, et al. Intrusion detectionin RBAC-administered databases [ C ]// 21st Annual Computer Security Applications Conference. 2005 : 5 -9.
  • 4Lee S Y, Low W L, Wong P Y. Learning fingerprints tor adatabase intrusion detection system[ C 1//the 7th European Symposiumon Research in Computer Security. 2002 : 264 - 279.
  • 5Cho Y H, Mangione-Smith W H. A pattern matching coprocessor for network security[ C //Proceedings of the 42nd Annual Conference on De- sign Automation. 2005 : 234 - 239.
  • 6Valeur F, Mutz D, Vigna G. A learning-based approach tothe detection of SQL attacks [ C 1//Proceedings of the Contrence on Detection of Intru- sions and Malware & Vulnerability Assessment. 2005 : 123 - 140.
  • 7Chung C, Gertz M, Demids K L. A misuse detection systeln fur database systems [ C 1//Proceedings of Integrity and Internal Control in lnfornmtion Systems: Strategic Views on the Need for Control. IF1P TCI 1 WG11.5 Third Working Conference. 2000:159 -178.
  • 8Domingos P, Pazzani M J. On the optimality of the simple Bayesian classifier under zero-one loss [ J 1. Machine Learning, 1997, 29 (2/3) : 103 - 130.
  • 9Hu Y, Panda B. Identification of malicious transactionsin database systemsI C//Proceedings nfthe International Database Engineering and Ap- plications Symposium. 2003:329 - 335.
  • 10He Q F, Ant6n 1 A. Requirements-based access control analysis and policy specification[ J 1- lnformalion and Software Technology, 2009, 51 (6) : 993 - 1009.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部