期刊文献+

大型航空构件专用热氢处理炉流-热-固耦合仿真分析 被引量:1

Fluid-thermal-solid coupling simulation analysis of thermohydrogen treatment furnace specially for large aviation components
原文传递
导出
摘要 采用冷壁结构设计的大型航空构件专用热氢处理炉结构复杂,多层隔热结构炉胆隔热屏板厚度极薄,导致网格划分和模拟计算十分困难。本文采用等效热阻的简化思路,在保证计算精度的前提下,将多层结构的炉胆等效为一层,节约了计算资源,实现了热氢处理炉的全尺寸流-热-固耦合仿真。评估了热氢处理炉的隔热效果,在炉温1000℃时,炉胆外壁面温度只有200~350℃,呈条纹状分布;冷壁结构设计的炉壳外层壁面温度约25℃,具有较好的保温隔热效果;最大热应力264 MPa,位于料台底座;拉伸性能测试表明,料台底座Q235钢经300℃渗氢处理后抗拉强度约为565 MPa,安全系数为2.14。本文分析了热氢处理炉的温度场、热应力场,并评估了其安全储备系数,为大型热氢处理炉全尺寸仿真提供了思路,为结构设计提供了数据支撑。 Structure of the large-scale thermohydrogen treatment furnace designed with cold wall structure is complex,and the thickness of heat insulation panel of multi-layer heat insulation structure furnace lining is very thin,which makes meshing and simulated calculation to be very difficult.So the full-size fluid-thermal-solid coupling simulation of the thermohydrogen treatment furnace was realized by adopting a simplified idea of equivalent thermal resistance and assuming the multi-layer furnace structure being equivalent to one layer,which still ensures the calculation accuracy and can save the calculation resources.The results of evaluation of furnace heat insulation effect show that when the furnace temperature is 1000℃,the outer wall temperature of the furnace is only 200-350℃and distributed in a stripe shape.The outer wall temperature of the furnace shell designed by the cold wall structure is about 25℃,which has good heat preservation and heat insulation effect.The maximum thermal stress is 264 MPa,which is located at the base of the material platform.The tensile test results show that the tensile strength of Q235 steel used for the material platform base is about 565 MPa after hydrogen permeation treatment at 300℃,and the safety factor is 2.14.Such temperature field and thermal stress field analyses of the furnace and safety reserve coefficient evaluation in this study may provide ideas for the full-scale simulation of large-scale thermohydrogen treatment furnace,and data support for the furnace structural design.
作者 乔达 卞祥德 付经伦 丁林超 王同 陆文林 Qiao Da;Bian Xiangde;Fu Jinglun;Ding Linchao;Wang Tong;Lu Wenlin(Advanced Gas Turbine Laboratory,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,School of Aeronautics and Astronautics,Beijing 100049,China;Innovation Academy for Light-duty Gas Turbine,Chinese Academy of Sciences,Beijing 100190,China;Key Laboratory of Advanced Energy and Power,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;Beijing Research Institute of Mechanical&Electrical Technology Ltd.,Beijing 100083,China)
出处 《金属热处理》 CAS CSCD 北大核心 2021年第1期214-219,共6页 Heat Treatment of Metals
基金 “高档数控机床与基础制造装备”科技重大专项(2019ZX04017001)。
关键词 热氢处理炉 仿真分析 氢脆 热应力 thermohydrogen treatment furnace simulation analysis hydrogen embrittlement thermal stress
  • 相关文献

参考文献11

二级参考文献90

共引文献167

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部