期刊文献+

复合电源型电动汽车的自适应能量管理策略 被引量:2

Adaptive energy management strategy for hybrid electric vehicle
下载PDF
导出
摘要 驾驶意图是影响电动汽车能量分配的重要因素,为此提出了基于驾驶意图-模糊自适应控制的能量管理策略。在传统的模糊控制能量策略基础上,增加多模糊控制器识别出驾驶意图,其识别结果用于自适应修正传统能量分配系数,使得能量管理策略不仅只考虑车的因素还考虑路况、驾驶员的因素。较模糊控制策略,所提的能量管理策略能量利用率提高了约3.61%,电池的最大输出电流降低了15.45%,电池的功率波动降低了13.86%,电池的温升降低了5.19%。仿真结果表明,基于驾驶意图-模糊自适应控制的能量管理策略能更有效提高蓄电池能量利用率,延长蓄电池寿命。 Driving intention is an important factor affecting the energy distribution of electric vehicles.This paper presented an energy management strategy based on driving intention fuzzy adaptive control.On the basis of the traditional fuzzy control energy strategy,the multi fuzzy controller was added to distinguish the driving intention,and the recognition result was used to adaptively modify the traditional energy distribution coefficient,so that the energy management strategy not only considered the factors of the vehicle,but also the factors of the road condition and the driver.Compared with the fuzzy control strategy,the energy utilization rate is increased by about 3.61%,the maximum output current of the battery is reduced by 15.45%,the power fluctuation of the battery is reduced by 13.86%,and the temperature rise of the battery is reduced by 5.19%.The simulation results show that the energy management strategy based on driving intention fuzzy adaptive control can improve the energy utilization rate and prolong the battery life.
作者 唐强 汤赐 曾云龙 王勇 冷婷 TANG Qiang;TANG Ci;ZENG Yun-long;WANG Yong;LENG Ting(School of Electrical and Information Engineering,Changsha University of Technology,Changsha Hunan 410114,China)
出处 《电源技术》 CAS 北大核心 2021年第2期181-184,231,共5页 Chinese Journal of Power Sources
基金 “湖南省电动交通与智能配网工程技术研究中心”开放基金项目(2015TP2001) 国家一流建设学科创新人才培养项目(03/15) 湖南省自然科学基金项目(2017JJ2265) 湖南省教育厅科学研究项目(14C0022)。
关键词 电动汽车 模糊控制 驾驶意图识别 自适应调整 electric vehicle fuzzy control driving intention recognition adaptive adjustment
  • 相关文献

参考文献7

二级参考文献43

  • 1ROY H K, MCGORDON A, JENNINGS P A. A generalized powertrain design optimization methodology to reduce fuel economy variability in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2014, 63(63): 1055-1070.
  • 2LANGARI R, WON J S. Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process[J]. Transactions on Vehicular Technology, 2005, 54(3): 925-934.
  • 3MURPHEY Y L, MILTON R, KILIARIS L. Driver's style classification using jerk analysis[C]// Computational Intelligence in Vehicles and Vehicular Systems, Nashville, USA, March 30-April 2, 2009: 23-28.
  • 4YU H F, LIU L, BAI B X, et al. A dynamic programming-based control strategy with optimum efficiency of hybrid energy storage system for HEV[J]. Advanced Materials Research, 2015, 1092-1093 : 165-168.
  • 5WANG J, WANG Q, WANG P. The development and verification of a novel ECMS of hybrid electric bus[J]. Mathematical Problems in Engineering, 2014, 48(1):331-350.
  • 6WANG J, WANG Q N, ZENG X H, et al. Driving cycle recognition neural network algorithm based on the sliding time window for hybrid electric vehicles[J]. International Journal of Automotive Technology, 2015, 16(4): 685-695.
  • 7DENIS N, DUBIOS M R, DUBE R, et al. Blended power management strategy using pattern recognition for a plug-in hybrid electric vehicle[J]. International Journal of Intelligent Transportation Systems Research, 2014: 1-14.
  • 8KANTOR S, STAREK T. Design of algorithms for payment telematics systems evaluating driver's driving style[J]. Transactions on Transport Sciences, 2014, 7(1): 9-16.
  • 9RUI W, LUKIC M, Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[C]//Processdings of VPCC 2011 Vehicle Power and Propulsion Conference, Chicago, USA, September, 2011: 1-7.
  • 10HUANG X, TAN Y, HE X. An intelligent multi-feature statistical approach for discrimination of driving conditions of hybrid electric vehicle[C]//Proceedings of International Joint Conference on Neural Networks, Atlanta, USA, June, 2009: 1286-1293.

共引文献98

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部