摘要
风电与储能联合投标可有效应对风电的随机性,提高风电与储能的综合效益。文章针对电力市场环境下风储联合投标的模型与算法问题开展研究。首先,详细考虑储能电池循环寿命、风储联合调频性能、风储联合运行条件及电力市场方面的约束,建立风储联合参与电能量市场和调频市场的投标模型。然后,将所提模型转化为马尔科夫决策过程,并提出一种改进动态规划算法进行求解。该算法利用情景记忆避免对各个子问题的重复计算,可显著提高计算效率,并有效处理风储联合投标过程中出现的随机性、非线性、离散性问题和逻辑变量。最后,通过算例说明了所提方法的有效性。
The joint bidding of the wind power and the energy storage can effectively deal with the randomness of the wind power and improve the comprehensive benefit of the wind-storage system. This paper focuses on the model and algorithm of the joint bidding of the wind power and the energy storage in the electricity market. First, a bidding model for the wind-storage system to participate in the energy market and the frequency regulation market is established, in which the battery life, the frequency regulation performance, the operation conditions of the wind-storage system and the constraints in the electric market are considered. Secondly, the proposed model is transformed into a Markov decision process, and then solved by an improved dynamic programming algorithm. The episodic memory technique is used to avoid the repeated calculation of the sub-problems and improve the calculation efficiency. All the randomness, nonlinearity, discreteness and logical variables generated in the joint bidding of the wind-storage system can be handled by the proposed algorithm. Finally, case studies demonstrate the effectiveness of the proposed method.
作者
王浩浩
陈嘉俊
朱涛
吴明兴
陈青
朱建全
刘明波
WANG Haohao;CHEN Jiajun;ZHU Tao;WU Mingxing;CHEN Qing;ZHU Jianquan;LIU Mingbo(Guangdong Electric Power Trading Center Co.,Ltd.,Guangzhou 510080,Guangdong Province,China;School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong Province,China)
出处
《电网技术》
EI
CSCD
北大核心
2021年第1期208-215,共8页
Power System Technology
基金
广东电力交易中心有限责任公司科技项目(GDKJXM 20172986)
国家自然科学基金项目(51977081)
广东自然科学基金项目(2018A0303131001,2019A1515010877)
中央高校基本科研业务费专项资金项目(D2191690)。
关键词
风储系统
投标策略
储能寿命
调频
改进动态规划
wind-storage system
bidding strategy
storage life
frequency regulation
improved dynamic programming