摘要
实际公交路网通常为复杂的非线性时变系统,难以有效构建线路间的时空间依赖关系.因此,文中提出基于注意力机制和分时图卷积的公交客流预测模型,提升公交客流量预测的准确性.首先通过长短期记忆网络提取历史数据中的时间特征,并利用通道注意力模块加权特征.再使用分时图卷积方法分析不同时段下公交线路间的空间依赖性,根据预测时段选择不同的关系矩阵,通过图卷积的方式完成对非欧关系的建模.最后,融合提取的时空间特征与外部因素(天气、节假日信息等)的特征表示,得到最终的预测结果.在真实公交数据上的实验表明,文中模型可提升预测精度,加快学习速率.
Real bus network tends to be a complicated nonlinear time-varying system.Therefore,the spatiotemporal correlation between different bus lines can hardly be built effectively.To solve this problem,an attention and time-sharing graph convolution based long short-term memory network for bus passenger flow forecast is proposed.Firstly,temporal features of historical data are extracted by long short-term memory network(LSTM),and then they are weighted by a channel-wise attention module.A time-sharing graph convolution approach is utilized to analyze the spatial dependencies among bus lines.Different adjacent matrices are selected according to time intervals,and non-Euclidean pair-wise correlations are modeled via graph convolution.Finally,the final prediction result is obtained by integrating the extracted spatiotemporal features and vector representations of external factors,like weather and holiday information.Experiments on real bus passenger flow datasets indicate that the proposed model improves the prediction accuracy and learning speed evidently.
作者
张伟
朱凤华
陈圆圆
吕宜生
ZHANG Wei;ZHU Fenghua;CHEN Yuanyuan;Lü Yisheng(School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049;State Key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190;Cloud Computing Center,Chinese Academy of Sciences,Dongguan 523808)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2021年第2期167-175,共9页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.U1811463)
广东省基础与应用基础研究基金项目(No.2019B1515120030)资助。
关键词
智能交通
公交客流预测
递归神经网络
通道注意力模块
分时图卷积
Intelligent Transportation
Bus Passenger Flow Prediction
Recurrent Neural Network
Channel-Wise Attention
Time-Sharing Graph Convolution