摘要
行人重识别是指利用计算机视觉技术识别不同监控设备下的目标行人,该技术在公共安全与相册管理等方面应用较广。然而现有行人重识别算法在局部特征区域划分后出现离异值使该区域内容不一致,导致局部特征可区分性降低。提出一种基于局部区域特征选择的内容一致性行人重识别算法。将行人图像输入残差卷积神经网络取得张量,根据局部区域内容一致性从张量中选择基本单位特征向量,使用Softmax函数计算其局部区域概率重新生成局部区域,从而消除离异值,增加类间差异并减少类内差异。实验结果表明,与Spindel、PN-GAN等行人重识别算法相比,该算法的行人重识别准确率更高,其提取的行人特征可区分性和鲁棒性更好。
Pedestrian re-identification is to use computer vision technology to identify the target pedestrian under different monitoring equipment,which is widely used in public safety and album management.However,the existing pedestrian re-identification algorithms often generate outlier values after the local feature region is divided and thus lead to the region content inconsistency,reducing the distinguishability of local features.This paper proposes a Content-Consistent Pedestrian Re-identification(CCreID)algorithm based on local region feature selection.The pedestrian image is input into the residual convolutional neural network to obtain the tensor.According to the consistency of local region content,the basic unit feature vector is selected from the tensor.Then the local region probability is calculated by using the Softmax function to regenerate the local region,so as to eliminate the outliers,increase the differences between classes and reduce the differences within classes.Experimental results show that compared with Spindel,PN-GAN and other pedestrian re-identification algorithms,the proposed algorithm has higher accuracy of pedestrian re-identification and better distinguishability and robustness of extracted pedestrian features.
作者
田智慧
郑付科
高需
TIAN Zhihui;ZHENG Fuke;GAO Xu(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;School of Geoscience and Technology,Zhengzhou University,Zhengzhou 450052,China;Supercomputing Center of Henan Province,Zhengzhou University,Zhengzhou 450052,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2021年第3期237-242,共6页
Computer Engineering
基金
国家重点研发计划(2018YFB0505004-03)
郑州大学科研启动基金(32210919)。
关键词
行人重识别
公共安全
内容一致性
局部特征
离异值
pedestrian re-identification
public security
content consistency
local feature
outlier