摘要
采用Gleeble-3500热模拟实验机在变形温度为600~800℃和应变速率为0.01~10 s^(-1)时对HAl61-4-3-1铝黄铜合金进行等温热压缩实验,对实验所获得真实应力-应变曲线进行摩擦修正,并以修正后的应力应变数据构建了考虑应变补偿的Arrhenius本构模型。其次,根据修正的应力应变数据构建了应变为0.3、0.6和0.9时HAl61-4-3-1合金的热加工图,并结合变形后微观组织确定了合金的失稳区和安全加工区域。结果表明:该合金在实验范围内的最佳工艺参数为:600~800℃&0.01~0.1 s^(-1),660~740℃&0.1~10 s^(-1)和740~800℃&0.1~4 s^(-1),其变形机制主要为动态再结晶和动态回复。
The isothermal hot compression experiment of HAl61-4-3-1 aluminum brass alloy was carried out by using a Gleeble-3500 thermal simulation machine at deformation temperature of 600-800℃and strain rate of 0.01-10 s^(-1).Friction correction of the true stress-strain curves obtained from the experiment was carried out,and a Arrhenius constitutive model considering strain compensation was constructed with the corrected stress-strain data.Second,according to the corrected flow stress and strain data,the hot processing map of the HAl61-4-3-1 alloy with strain of 0.3,0.6 and 0.9 was constructed,the instability region and safe processing region of the alloy were determined by combining the microstructure after deformation.The results show that the optimum processing parameters of the alloy in the range of this experiment are as follows:deformation temperature of 600-800℃and strain rate of 0.01-0.1 s^(-1),deformation temperature of 660-740℃and strain rate of 0.1-10 s^(-1) and deformation temperature of 740-800℃and strain rate of 0.1-4 s^(-1),the deformation mechanism of the alloy is mainly dynamic recrystallization and dynamic recovery.
作者
夏洪均
梁强
李平
李永亮
XIA Hong-jun;LIANG Qiang;LI Ping;LI Yong-liang(College of Mechanical Engineering,Chongqing Technology and Business University,Chongqing 400067,China;Engineering Training Center,Chongqing Technology and Business University,Chongqing 400067,China)
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2021年第3期174-184,共11页
Transactions of Materials and Heat Treatment
基金
重庆市教育委员会科学技术研究项目(KJQN201900836)
制造装备机构设计与控制重庆市重点实验室开放课题(CTBU-KFJJ2018093,CTBU-KFJJ2019078)。