期刊文献+

基于深度学习的机房人物重识别研究 被引量:1

Research on computer room character recognition based on deep learning
下载PDF
导出
摘要 机房内的各类设施通常由管理员统一调度,对视频中管理人员的路径追踪至关重要。为此该文提出一种基于深度学习的机房人物重识别方法,以为后续的责任追查过程提供依据。该方法以残差神经网络ResNet-50作为特征提取网络,并使用三元损失函数使模型更适用于人物重识别任务。以贵州省某电网系统机房作为试验平台进行测试。结果表明,该方法的准确率与召回率均满足实际要求,具备一定的工程参考价值。 All kinds of facilities in the computer room are usually dispatched by the administrator,which is very important for the administrator's path tracking in the video.In order to provide the basis for the follow-up process of responsibility tracing,a new method based on deep learning is proposed.In this method,the residual neural network resnet-50 is used as the feature extraction network,and the ternary loss function is used to make the model more suitable for human re recognition task.A power grid system room in Guizhou Province is used as the test platform for testing.The results show that the accuracy and recall rate of the method meet the actual requirements,and have certain engineering reference value.
作者 卢翔 苏杨 余萱 张少超 LU Xiang;SU Yang;YU Xuan;ZHANG Shaochao(Information center of Guizhou Power Grid Co.,Ltd.;Mechanical engineering of Guizhou University, Guizhou Guiyang 550002, China)
出处 《工业仪表与自动化装置》 2021年第2期104-107,共4页 Industrial Instrumentation & Automation
关键词 深度学习 人物重识别 残差神经网络 三元损失函数 deep learning character recognition residual neural network ternary loss function
  • 相关文献

参考文献4

二级参考文献127

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献1111

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部