期刊文献+

基于LDA和KNN的下肢运动想象脑电信号分类研究 被引量:11

Classification of lower limb motor imagination signals based on LDA and KNN
下载PDF
导出
摘要 基于运动想象的脑-机接口系统(motor imagery brain computer interface,MI-BCI)是一种新兴的康复治疗手段。如何提高MI-BCI的识别准确率,是目前研究中的热点和难点。针对左、右脚的运动想象脑电信号进行分类研究,分别采集了单纯运动想象和含有电刺激辅助范式中的运动想象脑电信号,使用滤波器组共空间模式(filter bank common spatial pattern,FBCSP)进行特征提取后采用线性判别分析(linear discriminant analysis,LDA)与K-近邻法(k-nearest neighbor,KNN)相结合的方法实现分类识别,并与支持向量机(support vector machine,SVM)得到的分类结果进行对比。实验结果表明,LDA+KNN算法在两种条件下得到的平均分类准确率分别为67.5%和84.62%,比SVM算法结果高出了5.29%和6.01%,说明这种改进后的算法适用于下肢的运动想象分类。 In recent years,the brain-computer interface system for motion imagination(MI-BCI)is a new method of rehabilitation.How to improve the recognition accuracy of MI-BCI is the focus and difficulty in the research.This research realized the classification of left and right foot movement imagination.Collect motor imagination EEG signals in the motor imagination paradigm and the hybrid paradigm with electrical stimulation assistance.Adopted the method of filter band common spatial mode(FBCSP)to extract signal features,and then use the linear discriminant analysis(LDA)and K-nearest neighbor(KNN)to classify lower limb motor imagination.Compared with the classification results obtained by the support vector machine(SVM).Analysis results shows that the average classification accuracy results based on the LDA+KNN algorithm in two paradigms are 67.5%and 84.62%,respectively,Increased by 5.29%and 6.01%than SVM results.It is proved that the algorithm combined with LDA and KNN is suitable for the classification of motor imagination of lower limbs.
作者 李嘉莹 赵丽 边琰 郭芳青 Li Jiaying;Zhao Li;Bian Yan;Guo Fangqing(Tianjin Key Laboratory of Information Sensing and Intelligent Control,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《国外电子测量技术》 北大核心 2021年第1期9-14,共6页 Foreign Electronic Measurement Technology
基金 自然科学基金(18JCYBJC88200)项目资助。
关键词 下肢运动想象 线性判别分析 K-近邻法 支持向量机 lower limbs motor imagery LDA KNN SVM
  • 相关文献

参考文献11

二级参考文献70

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2杨坤德,田梦君,张海南,赵亚梅.脑—计算机接口技术的研究进展[J].生物医学工程学杂志,2004,21(6):1024-1027. 被引量:9
  • 3Jonathan R Wolpawa,Nieis Birhaumer,Dennis J McFarland.Brain-computer interfaces for communication and control[J].Ciinical Neurophysiology,2002(113):767-791.
  • 4Gary E Birch,Steven G Mason,Jaimie F Borrisoff.Current trends in brain-computer interface research at the neil squire foundation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineermg,2003,11(2):123-126.
  • 5Paul B Colditz,Chris J Burke,Patrick Celka.Digital processing of EEG signals[J].IEEE Engineering in Medicine and Biology,2001,20(5):21-22.
  • 6Jun Lv,Meichun Liu.Common spatial pattern and particle swarm optimization for channel selection in BCI[C].The 3rd International Conference on Innovative Computing Information and Control,2008:457-457.
  • 7Lal T N,Schroder M,Hintergerger T,et al.Support vector channel selection in BCI[J].IEEE Trans Biomed Eng,2004,51(6):1003-1010.
  • 8Wang Yijun,Gao Shangkai,Gao Xiaorong.Common spatial pattern method for channel selection in motor imagery based brain-compurer interface[C].Shanghai,China:Proceedings of the 27th Annual Conference of Engineering in Medicine and Biology,2005.
  • 9CHIN Z Y,ANG K K,WANG C C,et al.Multi-class filter bank common spatial pattern for four-class motor imagery BCI[J].31st Annual International conference of the IEEE EMBS,2009:571-574.
  • 10LI Y,GAO X R,LIU H SH,et al.Classification of single-trial electroencephalogram during finger movement[J].IEEE Transactions on Biomedical Engineering,2004,51(6):1019-1025.

共引文献66

同被引文献99

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部