摘要
为提升对SAR图像乘性相干斑的抑制水平与边缘保护性能,该文提出了一种可自适应调节滤波强度(AFS)的SAR图像非局部平均(NLM)抑斑新算法(AFS-NLM)。该算法利用Frost滤波图像计算的局部均值与方差来改善SAR图像场景参量的估计,形成了一种能更好刻画SAR图像同质区与边缘区的改进Kuan滤波系数。利用局部均值比与改进Kuan滤波系数分别作为新的相似性测量参量与自适应衰减因子,构建了一种更适应SAR图像乘性噪声特性的改进NLM滤波。利用偏平滑参数与偏边缘保护参数控制下的改进NLM滤波,分别替代经典Kuan滤波模型中的像素局部均值与自身灰度值作为加权项,并采用由改进Kuan滤波系数构建的自适应调节因子对二者进行加权平均,从而形成了一种可自适应调节滤波强度的加权滤波新模型。实验表明,该文算法与近期多种先进算法相比,具有更好的相干斑抑制与边缘保护性能。
A new Non-Local Means(NLM)despeckling algorithm(AFS-NLM)with Adaptive Filtering Strength(AFS)is proposed to improve the performance of reducing multiplicative speckle and preserving the edges in SAR images.A modified Kuan filtering coefficient which can better characterize the homogeneous and edge regions of SAR image is formed by using the local mean and variance calculated in the Frost filtered image to improve the estimation of SAR image scene parameters.An improved NLM which adapts to the multiplicative noise characteristics is constructed by the new similarity measurement parameter estimated by the local mean ratio and the new adaptive decay factor estimated by the improved Kuan filtering coefficient.A new weighted filtering model which can automatically adjust the filtering strength is formed.In the new model,the improved NLM filters controlled by the skew smoothing parameters and the skew edge protection parameters are used to replace the local average value of pixels and the gray value of pixels in the classic Kuan filter model as weighting items,and the adaptive adjustment factor constructed by the improved Kuan filter coefficient is used to weight the two items.Experimental results and comparisons with several advanced despeckling algorithms in recent years show that the proposed algorithm has better speckle suppression and edge preservation performance.
作者
朱磊
李敬曼
潘杨
刘玉春
胡晓
ZHU Lei;LI Jingman;PAN Yang;LIU Yuchun;HU Xiao(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China;School of Mechanical and Electrical Engineering,Zhoukou Normal University,Zhoukou 466001,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2021年第5期1258-1266,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61971339)
陕西省重点研发计划(2019GY-113)
西安市科技局创新引导计划(201805030YD8CG14(6))。