期刊文献+

一种优化的频率驾驭算法研究 被引量:4

Research on An Optimized Frequency Steering Algorithm
下载PDF
导出
摘要 为满足各应用领域对高精度时间性能不断提升的需求,该文设计实现了一种迭代的优化频率驾驭算法,主要分为纸面时间计算和实际物理信号实现两个部分。其中纸面时间计算采用ALGOS算法,利用实时原子钟数据和Circular T公报数据计算获得准确可靠的时间尺度,保障了驾驭参考的准确性和实时性。实时物理信号实现采用最优二次型高斯控制算法与Kalman算法综合,通过实时调整参数,计算出最优的频率驾驭量,将该驾驭量输送至频率调整设备,最终实现高精度时间信号的输出,整个驾驭系统是闭环的。该文基于我国时间基准保持系统和原子钟组,搭建试验平台,采用该算法对一台氢钟进行为期140天的频率驾驭,最终对输出的物理信号进行性能评估。试验结果表明,该算法有效提高了驾驭后物理信号的准确度和稳定度,驾驭后信号与国际标准时间协调世界时(UTC)相比,相位偏差保持在±3 ns以内,且30天稳定度优于5×10^(–16)。 In order to meet the increasing demands for the performance of time in various application fields,an optimized frequency steering algorithm is designed and implemented in this paper,which is mainly divided into two parts:paper time scale calculation and physical signal implementation.ALGOS algorithm is adopted for the paper time scale calculation,and then an accurate and reliable time scale is calculated by using real-time atomic clock data and Circular T data,which ensures the accuracy and real-time steering reference scale.Realtime physical signals are implemented using an optimal Linear Quadratic Gaussian(LQG)control algorithmand and Kalman algorithm.By adjusting parameters in real time,the optimal frequency steering value is generated,this value is sent to the frequency adjustment device,and finally the output of the high-precision time signal is realized.The entire steering system is closed-loop.Based on time keeping system and atomic clock assemble,a test platform is built,and the algorithm is used to perform a 140 days frequency steering on a hydrogen maser clock,and finally the performance evaluation of the output physical signal is performed.Experimental results show that this algorithm improves effectively the accuracy and stability of the output physical signal.Compared with Universal Time Co-ordinated(UTC),the output time signal maintains a time deviation within±3 ns,and its stability is better than 5×10^(–16)at 30 days.
作者 赵书红 董绍武 白杉杉 高喆 ZHAO Shuhong;DONG Shaowu;BAI Shanshan;GAO Zhe(National Time Service Center,CAS,Xi’an 710600,China;Key Laboratory of Time and Frequency Primary Standards,National Time Service Center,CAS,Xi’an 710600,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Astronomy and Space Science,UCAS,Beijing 100049,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第5期1457-1464,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(11773030) 中国科学院青年创新促进会资助项目(2020402)。
关键词 高精度时间 时间尺度 时间保持 频率驾驭 KALMAN算法 最优二次型高斯控制算法 High precision time Time scale Time keeping Frequency steering Kalman algorithm Linear quadratic Gaussian control algorithm
  • 相关文献

参考文献7

二级参考文献53

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2Hall D L and Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
  • 3Juliet S J and Uhlmann J K. General Decentralized Data F~sion with Covariance Intersection. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Second Edition, New York: CRC Press, 2008: 319-342.
  • 4Hajiyev C G and Soken H E. Robust adaptive Kalman filter for estimation of UAY dynamics in the presence of sensor/ actuator faults[J]. Aerospace Science and Technology, 2013, 28(1): 376-383.
  • 5Le M S, Shin H S, Markham K, et al.. Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32: 236-244.
  • 6Feng J X, Wang Z D, and Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises[J]. Information Fusion, 2013, 14(1): 78-86.
  • 7Li X R, Zhu Y M, and Han C Z. Optimal linear estimation fusion-Part I: Unified fusion rules[C]. IEEE Transations on Information Theory, 2003, 49(9): 2192-2208.
  • 8Julier S J and Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, 1997: 2369-2373.
  • 9Uhlmann J K. Covariance consistency methods for fault~tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215.
  • 10Julier S J and Uhlmann J K. Using covariance intersection for SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 3-20.

共引文献38

同被引文献37

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部