期刊文献+

锂离子电池中硅负极材料的研究进展 被引量:3

Research Progress of Silicon Anode Materials in Lithium-ion Batteries
下载PDF
导出
摘要 锂离子电池自身存在诸多优点,它的储存能量密度高,额定电压高,自放电小,电池寿命长,且工作温度区间很大,故其广泛应用于智能手机以及电动车中。构成锂离子电池的负极材料中最常见的是石墨,其层间的范德华力确保该材料在充放电过程中的稳定性以及循环使用寿命,但也存在两面性,由于晶格常数较小限制了锂离子能够插层的位置,容量值低,这限制了锂离子电池在各领域的应用。因此对高容量负极材料的探索研究得到广泛关注,硅材料因具有目前最高的理论比容量、合适的嵌锂平台、大储量等优点,引起了众多研究者的关注,成为最具潜力的下一代锂离子电池的负极材料。但其也存在一些问题,针对硅材料目前存在的问题及解决该问题的方法进行了综述。 Lithium-ion batteries have many advantages.They have high storage energy density,high rated voltage,low selfdischarge,long battery life,and large operating temperature range,so they are widely used in smart phones and electric vehicles.The most common negative electrode material for lithium-ion batteries is graphite.The van der Waals force between the layers ensures the stability and cycle life of the material during the charge and discharge process,but there are also two sides.The small lattice constant limits lithium The position where the ions can be intercalated has a low capacity value,which limits the application of lithium-ion batteries in various fields.Therefore,the exploration and research of high-capacity anode materials has received extensive attention.Silicon materials have attracted the attention of many researchers due to the highest theoretical specific capacity,suitable lithiumintercalation platform,and large reserves,and have become the most promising next generation.Anode material for lithium-ion batteries.But it also has some problems.This article reviews the current problems of silicon materials and the methods to solve them.
作者 佟小萌 Tong Xiao-meng
机构地区 沈阳师范大学
出处 《化工设计通讯》 CAS 2021年第5期77-78,共2页 Chemical Engineering Design Communications
关键词 锂离子电池 负极材料 硅材料 lithium ion battery anode material silicon material
  • 相关文献

参考文献1

二级参考文献20

  • 1任建国,王科,何向明,姜长印,万春荣,蒲薇华.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597-603. 被引量:23
  • 2谭春林,卢雷,李伟善.锂离子电池合金负极的研究进展[J].电池工业,2007,12(2):135-139. 被引量:3
  • 3Kim J B, Jun B S, Lee S M. Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries[J]. Electrochimica Acta, 2005, 50(16): 3390-3394.
  • 4Lee K L, Jung J Y, Lee S W, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries[J]. Journal of Power Sources, 2004, 129(2): 270-274.
  • 5Lee H Y, Lee S M. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries[J]. Journal of Power Sources, 2002, 112(2): 649-654.
  • 6ZHOU Sa, LIU Xiao-hua, WANG Dun-wei. Si/TiSi2 heteronanostmctures as high capacity anode material for Li ion batteries[J]. Nano Letters, 2010, 10(3): 860-863.
  • 7ZHAO Zhong-qin, WU Zhong-you, YANG Wu-bao, et al. A novel silicon/carbon composite film as anode material for lithium ion secondary battery[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(12): 39-43.
  • 8Wang G X, Sun L, Bradhurst D H, et al. Nano-crystalline NiSi alloy as an anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2000, 306(1): 249-252.
  • 9Kima I S, Kumta P N, Blomgren G E. Si/TiN nanocomposites novel anode materials for Li-ion batteries[J]. Electrochemical and Solid State Letters, 2000, 3(11): 493-496.
  • 10Ng S H, Wang J Z, Wexler D, et al. Amorphous carbon-coated silicon nanocompisites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries[J]. Journal of Chemical Physics, 2007, 111(29): 11131-11138.

共引文献6

同被引文献53

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部