期刊文献+

T字型硅通孔不同位置界面裂纹扩展研究

Study on Interface Crack Propagation at Different Positions of T-Shaped Through-Silicon Vias
下载PDF
导出
摘要 硅通孔(TSV)技术是实现三维封装的关键技术。随着技术发展,TSV被设计成多种不同结构。以T字型TSV为研究对象,仿真分析了两种温度载荷下T字型TSV中产生的热应力及其分布情况。以此为基础,通过计算裂纹尖端能量释放率,研究了T字型TSV中3个不同位置的界面裂纹失效扩展。结果表明,T字型TSV中钉头的存在改变了铜/硅/钉头三重连接处和硅材料顶部钉头外周边界条件,在这两处易产生应力集中现象。与完全填充TSV结构相同位置的垂直裂纹相比,T字型TSV中垂直裂纹能量释放率明显下降。另外,T字型TSV中水平向外开裂的界面裂纹扩展时裂纹尖端能量释放率最小,水平向里开裂的界面裂纹扩展时裂纹尖端能量释放率最大,更易发生失稳扩展。 Through-silicon via(TSV)technology is the key technology of 3 D packaging.With the technology development,TSVs have been designed in various structures.With the T-shaped TSV as the research object,the thermal stress and its distribution in the T-shaped TSV under two different temperature loads were simulated and analyzed.On this basis,the failure propagation of interface cracks at three different positions in the T-shaped TSV were studied by calculating the energy release rate at the crack tip.The results show that the existence of the nail head in the T-shaped TSV changes the boundary conditions of the triple connection of copper/silicon/nail head and the periphery of the nail head at the top of the silicon material,and the stress concentration phenomenon easily occurs in these two places.Compared with the vertical crack at the same position in the fully filled TSV structure,the energy release rates of vertical cracks in the T-shaped TSV obviously decrease.In addition,in the T-shaped TSV,the energy release rate at the crack tip is the lowest when the interface crack is cracked horizontally outward,while the energy release rate at the crack tip is the highest when the interface crack is cracked horizontally inward,which is more prone to unstable propagation of this crack.
作者 李娜 张立文 张金灿 李阳 Li Na;Zhang Liwen;Zhang Jincan;Li Yang(Electrical Engineering College,Henan University of Science and Technology,luoyang 471023,China)
出处 《半导体技术》 CAS 北大核心 2021年第4期324-329,共6页 Semiconductor Technology
基金 国家自然科学基金资助项目(61804046) 河南省高等学校重点科研项目计划(19A510001,20B510006)。
关键词 硅通孔(TSV) 界面裂纹 裂纹扩展 能量释放率 热应力 through-silicon via(TSV) interface crack crack propagation energy release rate thermal stress
  • 相关文献

参考文献5

二级参考文献65

  • 1封国强,蔡坚,王水弟.硅通孔互连技术的开发与应用[J].电子与封装,2006,6(11):15-18. 被引量:8
  • 2LAU H T. Overview and outlook of through-silicon Via ( TSV ) and 3D integrations [J]. Microelectronics International, 2011, 28 (2): 8-22.
  • 3WU B Q, KUMAR A, PAMARTHY S. High aspect ratio silicon etch: a review [ J]. Journal of Applied Physics, 2010, 108 (5): 1101-1120.
  • 4HONG S C, LEE W G, KIM W J, et al. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking [J]. Microelectronics Reliability, 2011, 51 (12): 2228-2235.
  • 5LAU J H, SOON W H, KUMAR A, et al. Fabrication of high aspect ratio TSV and assembly with fine-pitch low- cost solder microbump for Si interposer technology with high-density interconnects [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1 (9): 1336-1344.
  • 6RANGANATHAN N, PRASAD K, BALASUBRAMANIAN N, et al. A study of thermo-mechanical stress and its impact on through-silicon vias [ J ]. Journal of Micromechanics and Microengineering, 2008, 18 ( 7 ) : 5018 - 5030.
  • 7FENG X, CAO I-I Y, YU H, et al. Study of internal stress on electroplating copper used in through silicon via filling [C] //// Proceedings of the 2011 InternationalConference on Electronic Packaging Technology and High Density Packaging. Shanghai, China, 2011: 1018- 1021.
  • 8KWON W S, ALASTAIR T D, TEO K H, et al. Stress evolution in surrounding silicon of Cu-filled through- silicon via undergoing thermal annealing by multi- wavelength micro-Raman spectroscopy [ J]. Applied Physics Letters, 2011, 98 (23): 232106-232108.
  • 9TRIGG A D, YU L H, CHENG C K, et al. Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator- based multi-wavelength micro raman spectroscopy [ J]. Applied Physics Express, 2010, 3 (8) : 086601 - 086603.
  • 10THOMPSON S E, SUN G, CHOI Y S, et al. Uniaxial- process-induced strained-Si: extending the CMOS roadmap [ J]. IEEE Transactions on Electronic Devices, 2006, 53 (5): 1010-1020.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部