期刊文献+

A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks 被引量:2

下载PDF
导出
摘要 Why heavily parameterized neural networks(NNs) do not overfit the data is an important long standing open question. We propose a phenomenological model of the NN training to explain this non-overfitting puzzle. Our linear frequency principle(LFP) model accounts for a key dynamical feature of NNs: they learn low frequencies first, irrespective of microscopic details. Theory based on our LFP model shows that low frequency dominance of target functions is the key condition for the non-overfitting of NNs and is verified by experiments. Furthermore,through an ideal two-layer NN, we unravel how detailed microscopic NN training dynamics statistically gives rise to an LFP model with quantitative prediction power.
作者 Yaoyu Zhang Tao Luo Zheng Ma Zhi-Qin John Xu 张耀宇;罗涛;马征;许志钦(School of Mathematical Sciences,Institute of Natural Sciences,MOE-LSC,and Qing Yuan Research Institute,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Center for Brain Science and Brain-Inspired Technology,Shanghai 200031,China)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第3期121-126,共6页 中国物理快报(英文版)
基金 Supported by the National Key R&D Program of China(Grant No.2019YFA0709503) the Shanghai Sailing Program the Natural Science Foundation of Shanghai(Grant No.20ZR1429000) the National Natural Science Foundation of China(Grant No.62002221) Shanghai Municipal of Science and Technology Project(Grant No.20JC1419500) the HPC of School of Mathematical Sciences at Shanghai Jiao Tong University。
关键词 networks NEURAL DETAILS
  • 相关文献

共引文献5

同被引文献5

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部