期刊文献+

Arab/c/opste N^(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies 被引量:21

原文传递
导出
摘要 The biological functions of the epitranscriptomic modification N^(6)-methyladenosine(m^(6)A)in plants are not fully understood.CPSF30-L is a predominant isoform of the polyadenylation factor CPSF30 and consists of CPSF30-S and an m^(6)A-binding YTH domain.Little is known about the biological roles of CPSF30-L and the molecular mechanism underlying its m^(6)A-binding function in alternative polyadenylation.Here,we charac-terized CPSF30-L as an Arabidopsis m^(6)A reader whose m^(6)A-binding function is required for the floral tran-sition and abscisic acid(ABA)response.We found that the m^(6)A-binding activity of CPSF30-L enhances the formation of liquid-like nuclear bodies,where CPSF30-L mainly recognizes m*A-modified far-upstream elements to control polyadenylation site choice.Deficiency of CPSF30-L lengthens the 3'untranslated region of three phenotypes-related transcripts,thereby accelerating their mRNA degradation and leading to late flowering and ABA hypersensitivity.Collectively,this study uncovers a new molecular mechanism for m^(6)A-driven phase separation and polyadenylation in plants.
出处 《Molecular Plant》 SCIE CAS CSCD 2021年第4期571-587,共17页 分子植物(英文版)
基金 This work was supported by the National Natural Science Foundation of China(nos.21822702,21820102008,92053109,and 21432002) the National Basic Research Program of China(2017YFA0505201 and 2019YFA0802201).
  • 相关文献

参考文献4

二级参考文献51

  • 1Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev 2011; 25:1770-1782.
  • 2Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011 ; 43:853-866.
  • 3Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 2013; 38:312- 320.
  • 4Derti A, Garrett-Engele P, Macisaac KD, et aL A quantitative atlas ofpolyadenylation in five mammals. Genome Res 2012; 22:1173-1183.
  • 5Hoque M, Ji Z, Zheng D, et al. Analysis of alternative cleav- age and polyadenylation by 3' region extraction and deep sequencing. Nat Methods 2013; 10:133-139.
  • 6Ozsolak F, Kapranov P, Foissac S, et al. Comprehensive polyadenylation site maps in yeast and human reveal perva- sive alternative polyadenylation. Cell 2010; 143:1018-1029.
  • 7Wu X, Liu M, Downie B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for ex- tensive alternative polyadenylation. Proc Natl Acad Sci USA 2011; 108:12533-12538.
  • 8Smibert P, Miura P, Westholm JO, et al. Global patterns oftissue-specific altemative polyadenylation in Drosophila. Cell Rep 2012; 1:277-289.
  • 9Ulitsky I, Shkumatava A, Jan CH, et al. Extensive alternative polyadenylation during zebrafish development. Genome Res 2012; 22:2054-2066.
  • 10Mangone M, Manoharan AP, Thierry-Mieg D, et al. The land- scape of C. elegans 3'UTRs. Science 2010; 329:432-435.

共引文献352

同被引文献107

引证文献21

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部