期刊文献+

基于深度强化学习的固定翼无人机编队协调控制方法 被引量:20

Coordination control method for fixed-wing UAV formation through deep reinforcement learning
原文传递
导出
摘要 由于运动学的复杂性和环境的动态性,控制一组无人机遂行任务目前仍面临较大挑战。首先,以固定翼无人机为研究对象,考虑复杂动态环境的随机性和不确定性,提出了基于无模型深度强化学习的无人机编队协调控制方法。然后,为平衡探索和利用,将ε-greedy策略与模仿策略相结合,提出了ε-imitation动作选择策略;结合双重Q学习和竞争架构对DQN(Deep Q-Network)算法进行改进,提出了ID3QN(Imitative Dueling Double Deep Q-Network)算法以提高算法的学习效率。最后,构建高保真半实物仿真系统进行硬件在环仿真飞行实验,验证了所提算法的适应性和实用性。 Due to the complexity of kinematics and environmental dynamics,controlling a squad of fixed-wing Unmanned Aerial Vehicles(UAVs)remains a challenging problem.Considering the uncertainty of complex and dynamic environments,this paper solves the coordination control problem of UAV formation based on the model-free deep reinforcement learning algorithm.A new action selection strategy,ε-imitation strategy,is proposed by combining theε-greedy strategy and the imitation strategy to balance the exploration and the exploitation.Based on this strategy,the double Q-learning technique,and the dueling architecture,the ID3 QN(Imitative Dueling Double Deep Q-Network)algorithm is developed to boost learning efficiency.The results of the Hardware-In-Loop experiments conducted in a high-fidelity semi-physical simulation system demonstrate the adaptability and practicality of the proposed ID3QN coordinated control algorithm.
作者 相晓嘉 闫超 王菖 尹栋 XIANG Xiaojia;YAN Chao;WANG Chang;YIN Dong(College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2021年第4期414-427,共14页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61906203) 西北工业大学无人机特种技术重点实验室基金(614230110080817)。
关键词 固定翼无人机 无人机编队 协调控制 深度强化学习 神经网络 fixed-wing UAVs UAV formation coordination control deep reinforcement learning neural networks
  • 相关文献

参考文献6

二级参考文献66

  • 1傅莉,王晓光.无人战机近距空战微分对策建模研究[J].兵工学报,2012,33(10):1210-1216. 被引量:20
  • 2杨孝文.未来五大客机新技术[J].厦门航空,2012(1):88-89. 被引量:4
  • 3季斌南.长航时无人机的特点、作用及发展动向[J].国际航空,1997(2):28-30. 被引量:29
  • 4Bangash Z A, Sanchez R P, Ahmed A. Aerodynamics of formalion flight[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2003 : 1-10.
  • 5Hamer M. Formation flying for future planes[J]. New Scientist Magazine, 1995,8(12) :8- 12.
  • 6Darrah M A, Niland W M, Stolarik B M. Multiple UAV dynamic task allocation using mixed integer linear programming in a SEAD mission[C]//American Institute of Aeronautics and Astronautics. 2006:1- 11.
  • 7Iannotta B. Vortex draws flight research forward [J]. Aerospace America, 2002,40(3) :26 30.
  • 8Ray R J, Cobleigh B R, Vachon M J, et al. Flight test techniques used to evaluate performance benefits during formation flight[R]. AIAA-2002- 4492,2002.
  • 9Saber R O,Murray R M. Distributed structural stabiliza tion and tracking for formations of dynamic multi agents [C]//Proceedings of the 41st IEEE Conference on Deci sion and Control. 2002: 209- 215.
  • 10Yang E F, Masuko Y, Mita T. Dual controller approach to three dimensional autonomous formation control[J]. Journal of Guidance, Control, and Dynamics, 2004, 27 (3): 336- 346.

共引文献720

同被引文献190

引证文献20

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部