期刊文献+

基于时空信息融合的无人艇水面目标检测跟踪 被引量:10

Object Detection and Tracking of Unmanned Surface Vehicles Based on Spatial-temporal Information Fusion
下载PDF
导出
摘要 在无人艇(USV)的导航、避障等多种任务中,目标检测与跟踪都十分重要,但水面环境复杂,存在目标尺度变化、遮挡、光照变化以及摄像头抖动等诸多问题。该文提出基于时空信息融合的无人艇水面视觉目标检测跟踪,在空间上利用深度学习检测,提取单帧深度语义特征,在时间上利用相关滤波跟踪,计算帧间方向梯度特征相关性,通过特征对比将时空信息进行融合,实现了持续稳定地对水面目标进行检测与跟踪,兼顾了实时性和鲁棒性。实验结果表明,该算法平均检测速度和精度相对较高,在检测跟踪速度为15 fps情况下,检测跟踪精确度为0.83。 Object detection and tracking is essential in the navigation,obstacle avoidance and other tasks of Unmanned Surface Vehicles(USV).However,the environment on the water is complex,and there are many problems such as object scale variation,occlusion,illumination variation and camera shaking,etc.This paper proposes the visual object detection and tracking of USV based on spatial-temporal information fusion.Deep learning detection in space is used to extract single-frame depth semantic features and correlation filter tracking in time is used to calculate the correlation of oriented gradient feature between frames.Temporal and spatial information through feature comparison are combined to achieve continuous and stable object detection and tracking with strong robustness at real-time.The experiments results demonstrate that the average detection and tracking accuracy is 0.83 with the average running speed of 15 fps,which illustrates the accuracy is improved and the speed is high.
作者 周治国 荆朝 王秋伶 屈崇 ZHOU Zhiguo;JING Zhao;WANG Qiuling;QU Chong(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;Shanghai Marine Diesel Engine Research Institute,China State Shipbuilding Corporation Limited,Shanghai 201108,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第6期1698-1705,共8页 Journal of Electronics & Information Technology
关键词 无人艇 水面目标 检测跟踪 时空信息融合 Unmanned Surface Vehicle(USV) Surface vehicle object Detection and tracking Spatial-temporal information Fusion
  • 相关文献

参考文献4

二级参考文献28

  • 1Li X, Hu W M, and Shen C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848.
  • 2Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 3Clement F, Camille C, Laurent N, et al.. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929.
  • 4Alex K, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, 2012: 748-764.
  • 5Zhou S S, Chen Q C, and Wang X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27.
  • 6Abdel-Hamid O, Mohamed A R, Jiang H, et al.. Convolutional neural networks for speech recognition[J]. ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
  • 7Chen X Y, Xiang S M, and Li C L. Vehicle detection in satellite images by hybrid deep convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2014, 11(10): 1797-1801.
  • 8Evgeny A S, Denis M T, and Serge N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94.
  • 9Baldi P and Hornik K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58.
  • 10Chan Tsung-han, Jia Kui, Gao Sheng-hua, et al.. PCANet: a simple deep learning baseline for image classification[OL]. http://arxiv.org/abs/1404.3606, 2014.

共引文献64

同被引文献74

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部